欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 座右铭 > 如约而至相关的座右铭

如约而至相关的座右铭

时间:2017-08-11 23:26

交朋友时,你最看重一个人的什么品质

1、苏步   苏步青1902年9月出生在浙江阳县的一个山村里。

虽境清贫,可他父吃俭用,拼死拼活也要供他上学。

他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。

可是,后来的一堂数学课影响了他一生的道路。

  那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。

第一堂课杨老师没有讲数学,而是讲故事。

他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。

中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。

‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。

”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。

这堂课的最后一句话是:“为了救亡图存,必须振兴科学。

数学是科学的开路先锋,为了发展科学,必须学好数学。

”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。

  杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。

读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。

当天晚上,苏步青辗转反侧,彻夜难眠。

在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。

一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。

现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。

中学毕业时,苏步青门门功课都在90分以上。

  17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。

为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。

获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。

回到浙大任教授的苏步青,生活十分艰苦。

面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”   这就是老一辈数学家那颗爱国的赤子之心   2.陈景润 (1933—1996)   陈景润不爱玩公园,不爱逛马路,就爱学习。

学习起来,常常忘记了吃饭睡觉。

  有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。

于是,他放下饭碗,就跑到理发店去了。

  理发店里人很多,大家挨着次序理发。

陈景润拿的牌子是三十八号的小牌子。

他想:轮到我还早着哩。

时间是多么宝贵啊,我可不能白白浪费掉。

他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。

他背了一会,忽然想起上午读外文的时候,有个地方没看懂。

不懂的东西,一定要把它弄懂,这是陈景润的脾气。

他看了看手表,才十二点半。

他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。

谁知道,他走了不多久,就轮到他理发了。

理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?   过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。

可是他路过外文阅览室,有各式各样的新书,可好看啦。

又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。

他一摸口袋,那张三十八号的小牌子还好好地躺着哩。

但是他来到理发店还有啥用呢,这个号码早已过时了。

  陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。

可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。

  陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。

他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。

  “丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。

  管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。

  时间悄悄地过去,天渐渐地黑下来。

陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。

他拉了一下电灯的开关线,又坐下来看书。

看着看着,忽然,他站了起来。

原来,他看了一天书,开窍了。

现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。

  陈景润把书收拾好,就往外走去。

图书馆里静悄俏的,没有一点儿声音。

哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。

他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。

  要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。

可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢!   他走到电话机旁边,给办公室打电话。

可是没人来接,只有嘟嘟的声音。

他又拨了几次号码,还是没有人来接。

怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。

  “陈景润?”党委书记接到电话,感到很奇怪。

他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。

”   党委书记马上派了几个同志,去找图书馆的管理员。

图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。

  他打开灯,马上做起那道题目来。

  3.华罗庚   华罗庚出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师.   少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色.   3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子   聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽.   这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子.看到这里。

同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃.   4.祖冲之   祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.   祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以径一周三做为圆周率,这就是古率.后来发现古率误差太大,圆周率应是圆径一而周三有余,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--割圆术,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的割圆术方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做祖率.   祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.   祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:幂势既同,则积不容异.意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为祖暅原理.   5.陈省身   陈省身1911年10月28日生于浙江嘉兴秀水县,美籍华人,20世纪世界级的几何学家。

少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。

他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。

曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。

晚年情系故园,每年回天津南开大学数学研究所主持工作,培育新人,只为实现心中的一个梦想:使中国成为21世纪的数学大国。

  陈省身9岁考入秀州中学预科一年级。

这时他已能做相当复杂的数学题,并且读完了《封神榜》、《说岳全传》等书。

1922年秋,父亲到天津法院任职,陈省身全家迁往天津,住在河北三马路宙纬路。

第二年,他进入离家较近的扶轮中学(今天津铁路一中)。

陈省身在班上年纪虽小,却充分显露出他在数学方面的才华。

陈省身考入南开大学理科那一年还不满15岁。

他是全校闻名的少年才子,大同学遇到问题都要向他请教,他也非常乐于帮助别人。

一年级时有国文课,老师出题做作文,陈省身写得很快,一个题目往往能写出好几篇内容不同的文章。

同学找他要,他自己留一篇,其余的都送人。

到发作文时他才发现,给别人的那些得的分数反倒比自己那篇要高。

  他不爱运动,喜欢打桥牌,且牌技极佳。

图书馆是陈省身最爱去的地方,常常在书库里一呆就是好几个小时。

他看书的门类很杂,历史、文学、自然科学方面的书,他都一一涉猎,无所不读。

入学时,陈省身和他父亲都认为物理比较切实,所以打算到二年级分系时选物理系。

但由于陈省身不喜欢做实验,既不能读化学系,也不能读物理系,只有一条路——进数学系。

  数学系主任姜立夫,对陈省身的影响很大。

数学系1926级学生只有5名,陈省身和吴大任是全班最优秀的。

吴大任是广东人,毕业于南开中学,被保送到南开大学。

他原先进物理系,后来被姜立夫的魅力所吸引,转到了数学系,和陈省身非常要好,成为终生知己。

姜立夫为拥有两名如此出色的弟子而高兴,开了许多门在当时看来是很高深的课,如线性代数、微分几何、非欧几何等等。

二年级时,姜立夫让陈省身给自己当助手,任务是帮老师改卷子。

起初只改一年级的,后来连二年级的都让他改,另一位数学教授的卷子也交他改,每月报酬10元。

第一次拿到钱时,陈省身不无得意,这是他第一次的劳动报酬啊!   考入南开后,陈省身住进八里台校舍。

每逢星期日,他从学校回家都要经过海光寺,那里是日本军营。

看到荷枪实弹的日本鬼子那副耀武扬威的模样,他心里很不是滋味,不禁快步走开。

再往前便是南市“三不管”,是个乌烟瘴气的地方,令他万分厌恶。

从家返回学校时,又要经过南市、海光寺,直到走进八里台校园,他才感到松了口气。

6.丘成桐   丘成桐1949年出生于广东汕头,老家在梅州蕉岭,在香港长大。

父亲曾在香港香让学院及香港中文大学的前身崇基学院任教。

父教母慈,童年的丘成桐无忧无虑,成绩优异。

但在他14岁那年,父亲突然辞世,一家人顿时失去经济来源。

尽管丘成桐不得不一边打工一边学习,却仍然以优异成绩考入香港中文大学数学系。

  他的父亲在他14岁时去世,家境贫寒。

他中学的时候逃学一年,曾经成绩很差,差一点落榜。

19岁的时候来到美国伯克利,“21岁毕业时就注定要改变数学的面貌”。

这不是我的话,这是几年前加州大学洛杉矶分校希望把丘教授聘请过来的时候,系里讨论时一个年纪很大的几何学家引用陈省身先生说的一句话。

他10年之后成为数学界的一代天骄。

从他入学伯克利到在世界数学家大会做一小时报告还不到10年。

当年他只有28岁,也是在那一年,陈景润先生被邀请做45分钟的报告。

这期间他证明了卡拉比猜想、正质量猜想,开创了一个崭新的领域:几何分析。

  1981年,他32岁时,获得了美国数学会的维布伦(Veblen)奖——这是世界微分几何界的最高奖项之一;1983年,他被授予菲尔兹(Fields)奖章——这是世界数学界的最高荣誉;1994年,他又荣获了克劳福(Crawford)奖。

  除此之外,他还获得过美国国家科学奖章和加利福尼亚州最优秀的科学家的称号,是美国科学院院士、哈佛大学名誉博士、中国科学院外籍院士、香港中文大学名誉博士……   大学期间,他以三年时间修完全部必修课程,还阅读了大量课外资料。

他的突出成绩和钻研精神为当时的美籍教授萨拉夫所赏识,萨拉夫力荐他到美国加利福尼亚大学伯克利分校攻读博士研究生。

七十年代左右的伯克利分校是世界微分几何的中心,云集了许多优秀的几何学家和年轻学者。

在这里,丘成桐得到IBM奖学金,并师从著名微分几何学家陈省身。

  命运是公平的,奖章、荣誉,授予了那个在教室中坚持到最后的人。

这,并没有让丘成桐止步不前,他继续进行着大量繁杂的研究工作,并不断取得成就。

  坚韧、坚持、锲而不舍,这就是丘成桐的精神。

当然,也不是每个有着这样精神的人都能取得丘成桐一样的成就的。

数学需要勤奋,更需要天才。

正如著名数学家尼伦伯格所说,丘成桐“不仅具备几何学家的直观能力,而且兼有分析家的才能”。

著名数学家郑绍远先生回忆说,对于许多艰深的数学问题,丘成桐已思考近20年,虽然仍未解决,他还是没有轻易放弃思考。

  丘成桐对中国的数学事业一直非常关心。

从1984年起,他先后招收了十几名来自中国的博士研究生,要为中国培养微分几何方面的人才。

他的做法是,不仅要教给学生一些特殊的技巧,更重要的是教会他们如何领会数学的精辟之处。

他的学生田刚,也于1996年获得了维布伦奖,被公认为世界最杰出的微分几何学家之一。

  数学是奇妙的,只有锲而不舍才能探求其中真谛。

对于丘成桐这样的数学家来说,这种探求不但是人生的意义,也是人生的乐趣。

  丘先生绝对不是一个完人,但绝对是一个伟大的数学家。

你可以不喜欢这个人,但你不可能不喜欢他的数学,他证明了许多妙不可言的定理。

大家如果学数学,读到研究生的话你就会知道他的定理非常美妙,他的卡拉比猜想毫无疑问是数学中最深刻的定理之一,尤其是在超弦理论中应用之广不可思议,我想当年丘教授自己都没有想到。

  他个性坚强,永不服输,永不言弃,著述等身,得奖无数。

这些也带给他许许多多的误解。

因为少年得志,20几岁就功成名就,有人说他目中无人、傲慢至极。

当然,有这样的成就也让他有傲慢的资本。

我把他跟陈省身一比。

陈省身先生,大家跟他相处久了就知道也傲慢,只是他们以不同的形式表达他们的傲慢,丘成桐是直截了当,数学和为人是他衡量你的标准,他看你的话,你数学不好,他不愿意跟你多谈,你做事情不入他的眼,他不愿意搭理你。

  先生是微笑不语,什么人他都可以很平和地相处,但是这微笑中就蕴含着尊敬或者是不屑,你自己可以感觉出来。

他们都是真正的君子,都是我最敬佩的伟大的数学家,他们都尊重真正的君子和真正的数学家。

我想这是他们真正可贵的地方。

  30年来,丘先生不仅时刻把握着数学与物理跳动的脉搏,引导着世界数学发展的潮流,还一直怀着一颗赤子之心,关心和帮助着中国数学的进步。

他培养了众多的华人数学家。

他的学生和博士后在国外各个重要的大学里都有。

天才少年——比尔盖茨阅读答案

(1)写他和许多孩子一样,梦想成为人中豪杰。

(2)可爱 好动 志向远大 善于思考,喜欢创新 节俭(3)天才等于百分之一的灵感,加百分之九十九的勤奋。

我有一个4年的女朋友,但有天晚上我抱住了另一个女孩,亲吻了她,她是我们单位领导的女儿。

我很纠结。

数学家的故事;祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家. 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以径一周三做为圆周率,这就是古率.后来发现古率误差太大,圆周率应是圆径一而周三有余,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--割圆术,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间. 徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。

徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。

当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。

此外,还有几位讲师、助教。

数学系的课程主要由陈建功和苏步青担任。

当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。

泰勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度.泰勒斯说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理. 阿基米德叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。

当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。

根据这一道理,就可以判断皇冠是否掺假。

伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。

家庭的影响使伽罗华一向勇往直前,无所畏惧。

1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。

老师们对他的评价是“只宜在数学的尖端领域里工作”。

20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为计算机之父.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.关于无理数的发现古希腊的毕达哥拉斯学派认为,世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,这个学派中的一个成员希伯斯(Hippasus)突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传.但希伯斯却将这一秘密透露了出去.毕达哥拉斯大怒,要将他处死.希伯斯连忙外逃,然而还是被抓住了,被扔入了大海,为科学的发展献出了宝贵的生命.希伯斯发现的这类数,被称为无理数.无理数的发现,导致了第一次数学危机,为数学的发展做出了重大贡献. 中国数学史 数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。

中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。

到原始公社末期,已开始用文字符号取代结绳记事了。

西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形图案,半坡遗址的房屋基址都是圆形和方形。

为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。

据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。

商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。

公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。

《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为”六艺”之一的数已经开始成为专门的课程。

春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。

这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。

战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。

名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出”矩不方,规不可以为圆”,把”大一”(无穷大)定义为”至大无外”,”小一”(无穷小)定义为”至小无内”。

还提出了”一尺之棰,日取其半,万世不竭”等命题。

而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。

墨家给出一些数学定义。

例如圆、方、平、直、次(相切)、端(点)等等。

墨家不同意”一尺之棰”的命题,提出一个”非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的”非半”,这个”非半”就是点。

名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。

名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。

中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。

中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。

《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。

例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。

其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。

就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。

《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。

这些特点是同当时社会条件与学术思想密切相关的。

秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。

最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。

生活中的处处存在的数学大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。

比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米

王星与小英在解上面这道题时,计算的方法与结果都不一样。

王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。

这是为什么呢

你想出来了没有

你也列式算一下他们两人的计算结果。

”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。

其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。

如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。

所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。

两个答案,也就是说王星的答案加上小英的答案才是全面的。

在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。

否则就容易忽略了另外的答案,犯以偏概全的错误。

趣味的数学题目1.用1,2两个数总共可排出11,12,22,21四个两位数。

2.用1,2,3三个数字总共可排出__27___个三位数。

3.用1,2,3,4四个数字总共可排出___4^4_____个四位数。

4.家用弹子锁的锁心是用5根长短不一的金属圆柱棍制成的,试问:用这种金属圆柱棍制作的门锁中,没有相同钥匙的门锁共有__5^5__把。

5.若锁心是用10根长短不同的金属圆柱制成,那么没有相同钥匙的门锁有___10^10___把。

观察下列各组算式,探求其中规律,用含有自然数n的式子表示你的发现。

(1)2×2=4 1×3=3 (2)5×5=25 4×6=24 ... (3)(-2)(-2)=4 (-1)(-3)=3 .... ____n*n=(n-1)*(n+1)+1________________(-n)*(-n)=(2-n)*(1-n)+1____________ 如图,在四边形ABCD中,∠BAD=60°,∠B=∠D=90°,BC=11,CD=2,求对角线AC的长。

∠CAD=β,∠CAB=60°-βDC\\\/AC=sinβ,BC\\\/AC=sin∠CAB=sin(60°-β)AC=DC\\\/sinβ=BC\\\/sin(60°-β) 代入BC=11,CD=2通分(子)得 22\\\/11sinβ=22\\\/2sin(60°-β)11sinβ=2sin(60°-β)=√3cosβ-sinβ得tanβ=√3\\\/12,又CD=2,得AD=8√3由勾股定理得AC=14 写的这么辛苦给点分拉.

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片