欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 格言 > 安德鲁怀尔斯的格言

安德鲁怀尔斯的格言

时间:2016-08-06 20:45

安德鲁怀尔斯是哪年在剑桥发表演讲证明费马定理

1993年6月23日。

另外我也支持梅西。

两个半小时后的欧冠加油

怀尔斯真的证明了费马大定理吗

是的,用了近十年时间(1986-1994)。

1986年夏,在普林斯顿大学任教的安德鲁·怀尔斯(Andrew Wiles, 1953年 - )开始全力投入证明费马大定理。

当时,怀尔斯从一个朋友那里听说美国数学家肯·里贝特已经成功证明出谷山-志村猜想与费马大定理间的等价关系,于是决定全力投入证明谷山-志村猜想,这样就可以证明费马大定理。

经过长达7年完全独立而保密的研究,怀尔斯完成了证明。

1993年6月底,怀尔斯在一个剑桥大学牛顿研究所举行的重要会议上向在场的两百名数学家宣布他已成功证明了费马大定理,引发全世界轰动。

但是,1993年8月,审稿人们发现了怀尔斯的证明过程中有一个缺陷。

怀尔斯又投入了一年多时间,到1994年9月,终于成功修正原先证明中的错误,证明费马大定理。

他的证明过程写成两篇论文,共130页,发表在1995年5月的《数学年刊》上。

参考资料:

怀尔斯真的证明了费马大定理吗

是的1993年6月,英国数学家安德鲁·怀尔斯宣称证明:对有理数域上的一大类椭圆曲线,“谷山—志村猜想”成立。

由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞。

怀尔斯不得不努力修复着一个看似简单的漏洞。

怀尔斯和他以前的博士研究生理查德·泰勒用了近一年的时间,用之前一个怀尔斯曾经抛弃过的方法修补了这个漏洞,这部份的证明与岩泽理论有关。

这就证明了谷山-志村猜想,从而最终证明了费马大定理。

他们的证明刊在1995年的《数学年刊》(Annals of Mathematics)之上。

怀尔斯因此获得1998年国际数学家大会的特别荣誉,一个特殊制作的菲尔兹奖银质奖章。

建议参看

费马大定理 安德鲁 怀尔斯 论文

费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 的整数解都是平凡解,即 当n是偶数时:(0,±m,±m)或(±m,0,±m) (补充:(0,0,0)是其中一个特殊解2008年由赵浩杰提出) 当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0) 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。

虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

安德鲁·怀尔斯(公元1953年4月11日—)是当代有名的英国数学家。

1974年毕业于牛津大学默顿学院。

1977年在剑桥大学克莱尔学院获博士学位。

其后任克莱尔学院初级研究员及哈佛大学助理教授。

1981年到美国普林斯顿高等研究院任研究员。

1982年任普林斯顿大学(Princeton University)教授,1988—1990年任牛津大学皇家学会研究教授。

1989年当选为伦敦皇家学会会员。

1994年以后任普林斯顿大学欧根‧希金斯(Eugene Higgins)讲座教授。

怀尔斯对数学的最大贡献是证明了历时350多年的、著名的费马猜想。

在此之前,他于1977年和科茨(Coates)共同证明了椭圆曲线中最重要的猜想——伯奇—斯温耐顿—代尔(Birch-Swinnerton-Dyer)猜想的特殊情形(即对于具有复数乘法的椭圆曲线);1984年和马祖尔(Mazur)一起证明了岩泽理论中的主猜想。

在这些工作的基础上,他于1994年通过证明半稳定的椭圆曲线的谷山—志村—韦伊猜想,从而完全证明了费马最后定理。

他因此赢得多种荣誉和奖励:1996年当选为美国国家科学院外籍院士并获该科学院数学奖;同年还获欧洲的奥斯特洛夫斯基奖和瑞典科学院舍克奖、法国的费马奖;1997年获美国数学会科尔奖,同年最终获得1908年沃尔夫斯科尔(Wolfskehl)为解决费马猜想而设置的10万马克奖金。

由于他在费马最后定理方面的成就又获1996年度沃尔夫奖,以及1998年国际数学家大会颁发的特别贡献奖。

附:安德鲁·怀尔斯证明费马大定理的故事 解答数学“大问题”——证明费马大定理的故事 为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。

1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用130页长的篇幅证明了费马大定理。

怀尔斯成为整个数学界的英雄。

费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉的数学定理——毕达哥拉斯定理——来表达的。

2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两直角边的平方之和。

即X2+Y2=Z2。

大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:Xn+Yn=Zn,当n大于2时,这个方程没有任何整数解。

费马在《算术》这本书的靠近问题8的页边处记下这个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空白太小,写不下。

”这就是数学史上著名的费马大定理或称费马最后的定理。

费马制造了一个数学史上最深奥的谜。

要证明费马最后定理是正确的 (即x^ n+ y^n = z^n 对n>2 均无正整数解) 只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。

费马大定理证明过程: 对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。

本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。

本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。

关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式 引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点。

并声称自己当时进行了绝妙的证明。

这就是被后世人称为费马大定理的旷世难题。

时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是。

本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明。

定义1.费马方程 人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数。

在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶。

当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支. 定义2.增元求解法 在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算。

我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法。

利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单。

下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值。

一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则” 定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件: a≥3 { b=(a^2-Q^2)÷2Q c= Q+b 则此时,a^2+b^2=c^2是整数解; 证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形: Q2 Qb 其缺口刚好是一个边长为b的正方形。

补足缺口面积b^2后可得到一个边长 Qb 为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长。

故定理1得证

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片