什么是转化思想
这是数学上个思想转化思想------就是将未法或难以解决的,通过观察、分联想、类比等思维过程,选择恰当的方法进行变换,化归为已知知识范围内已经解决或容易解决的问题方法的数学思想。
化归与转化的思想是解决数学问题的根本思想,解题的过程实际就是转化的过程。
数学中的转化比比皆是,如:未知向已知的转化、数与形的转化、空间向平面的转化、高维向低维的转化、多元向一元的转化,高次向低次的转化等,都是转化思想的体现。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。
转化有等价转化与非等价转化。
等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。
非等价转化其过程是充分或必要的,要对结论进行必要的修正,它能给人带来思维的闪光点,找到解决问题的突破口。
我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。
著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。
数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。
等价转化思想方法的特点是具有灵活性和多样性。
在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。
它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。
消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。
可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。
由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。
在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。
按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能
数学转化思想怎么样才算转化成功
转化就是把不熟悉的问题化归到你熟悉的数学模型上,这个需要多做题来体会,并且多想想与本题有关的基础知识点。
什么是转化思想什么是什么是从特殊到一般的数学方法
简而言之,化归是一种目的性转化。
化归思想一个问题由难化易,由繁化简,由复杂化简单的过程称为化归,它是转化和归结的简称。
在解决问题的过程中,数学家往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。
把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。
化归法是一种分析问题解决问题的基本思想方法.在数学中通常的作法是:将一个非基本的问题通过分解、变形、代换…,或平移、旋转、伸缩…等多种方式,将它化归为一个熟悉的基本的问题,从而求出解答.如学完一元一次方程、因式分解等知识后,学习一元二次方程我们就是通过因式分解等方法,将它化归为一元一次方程来解的.后来我们学到特殊的一元高次方程时,又是化归为一元一次和一元二次方程来解的.对一元不等式也有类似的作法.又如在平面几何中我们在学习了三角形的内角和、面积计算等有关定理后,对n边形的内角和、面积的计算,也是通过分解、拼合为若干个三角形来加以解决的.再如在解析几何中,当我们学完了最基本、最简单的圆锥曲线知识以后,对一般圆锥曲线的研究,我们也是通过坐标轴平移或旋转,化归为基本的圆锥曲线(在新坐标系中)来实现的.其它如几何问题化归为代数问题,立体几何问题化归为平面几何问题,任意角的三角函数问题化归为锐角三角函数问题来表示的例子就更多了.所以,掌握化归的思想方法对于数学学习有着重要的意义.总之,化归的原则是以已知的、简单的、具体的、特殊的、基本的知识为基础,将未知的化为已知的,复杂的化为简单的,抽象的化为具体的,一般的化为特殊的,非基本的化为基本的,从而得出正确的解答.