
射线有什么特点
直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
射线:一边为端点,另一边无限延伸
x射线是如何产生的
具有什么样的特点
1.电子的韧制辐射,用高能电子轰击金属,电子在打进金属的过程中急剧减速,按照电磁学,有加速的带电粒子会辐射电磁波,如果电子能量很大,比如上万电子伏,就可以产生x射线,这是目前实验室和工厂,医院等地方用的产生x射线的方法.2.原子的内层电子跃迁也可以产生x射线,量子力学的理论,电子从高能级往低能级跃迁时候会辐射光子,如果能级的能量差比较大,就可以发出x射线波段的光子,说白了就是x射线.不同元素的原子发出的x射线光子不同,这个性质已经用来鉴别材料中的元素很久了。
X射线的特征是波长非常短,频率很高。
因此X射线必定是由于原子在能量 相差悬殊的两个能级之间的跃迁而产生的。
所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。
X射线在电场磁场中不偏转。
这说明X射线是不带电的粒子流。
比较超声波检测与射线检测的特点
1.超声探伤定性,定量,定位的准确率低于射线。
2.对于薄板,由于超声探头存在盲区,精度很低,多采用射线。
3.射线底片易于保留,有追溯性4.超声探伤机对操作人的手法,经验要求较射线高。
5.受环境温度影响超声较射线大。
无损检测方法的选择(1)压力容器的对接接头应当采用射线检测或者超声检测,超声检测包括衍射时差法超声检测(TOFD)、可记录的脉冲反射法超声检测和不可记录的脉冲反射法超声检测;当采用不可记录的脉冲反射法超声检测时,应当采用射线检测或衍射时差法超声检测做为附加局部检测。
TOFD技术采用一发一收两个探头进行检测,系统通过计算从缺陷尖端获得的衍射信号的时差,判断缺陷的大小和位置的一种超声检测技术。
和常规的脉冲回波相比有两个最大的不同是: A) 有很高的定量精度(绝对的误差是正负一毫米, 而监测的误差是正负零点三毫米), 在检测的过程中对缺陷的角度不敏感, 定量是基于衍射信号的时间而不是基于信号的波幅。
B) 使用TOFD的时候, 对缺陷的定性有可能不被承认, 原因是衍射信号的波幅不依赖于缺陷的尺寸, 在保证全覆盖的前提下对所有的数据进行分析, 因此进行TOFD的培训和经验是非常重要的。
TOFD技术主要用于碳钢焊缝的检测,但原理上也可以应用到其它被业主认可的材料。
TOFD已经被证明可用于9-300mm(0.375-12英寸)壁厚材料的检测,而采用多通道TOFD系统可用于400mm壁厚焊缝检测(包括10MHz、5MHz、3.5MHz和2.25MHz探头)。
(2)有色金属制压力容器对接接头应当优先采用X射线检测。
简述x射线的特点并说明临床意义
X射线的特征是波长非常短,频率很高,其波长约为(20~0.06)×10-8厘米之间.因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的.所以X射线光谱是原子中最靠内层的电子跃迁时发出来的.X射线在电场磁场中不偏转,这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象. X射线光子产生于高能电子加速,伽马射线则来源于原子核衰变. 产生X射线的最简单方法是用加速后的电子撞击金属靶.撞击过程中,电子突然减速,其损失的动能会以光子形式放出,形成X光光谱的连续部分,称之为制动辐射.通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出.于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1纳米左右的光子.由于外层电子跃迁放出的能量是量子化的,所以放出的光子的波长也集中在某些部分,形成了X光谱中的特征线,此称为特性辐射. 此外,高强度的X射线亦可由同步加速器或自由电子雷射产生.同步辐射光源,具有高强度、连续波长、光束准直、极小的光束截面积并具有时间脉波性与偏振性,因而成为科学研究最佳之X光光源.



