欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 千阳县三问五不心得体会

千阳县三问五不心得体会

时间:2017-09-25 01:03

有关于龙的传说

到西部去,到灾区去,到祖国和人民最需要的地方去

”带着知识,充满激情,胸怀抱负,我有幸成为一名光荣的2009年“西部计划”志愿者,来到了美丽的陕西省千阳县开始践行“新西部、新生活、新成长”的诺言。

经过了一年的志愿者生活和工作,让我的人生观、价值观都有所改变。

也许到今天我仍然回答不了很多朋友问我的问题:你为什么选择当“西部计划”志愿者

有时候我觉得,做一件事情并不需要回答为什么,重要的是我走的路是我心所指向的路。

我认同了自己的人生观、价值观和世界观,所以我选择我所坚信的。

在基层的工作很平凡,也很平淡,没有什么惊天动地的事迹,我只是要求自己努力做好每一件小事,努力尽到志愿者的义务。

特别是在“5.12”特大地震的影响下,灾后重建任务重、时间紧。

每天都是在紧张忙碌而又有条不紊的工作中度过的。

每周一早上9点准时参加例会,听取领导对本周工作的安排并做好详细的记录,及时传达会议精神,不折不扣完成领导安排的各项工作。

虽然家在农村,可我并不了解农村,而且管理者与被管理者由于所处地位的不同,体会也是完全不同的。

过去总觉得基层的乡镇干部工作清闲,一天到晚也做不了什么事。

但是,通过在这里的3个多月的学习工作,我的看法完全不同了。

基层工作是很辛苦的,有时常常是饭都顾不上吃,为了能给群众争取到更多的优惠政策与条件,常常会弄到身心俱疲。

通过走访村里的老党员、老干部,及时的了解情况,听取他们的意见和建议,努力向他们学习农村工作的方法与经验;通过拜访村里的大户、能手,了解他们致富的方法并帮助他们解决致富过程中遇到的困难,尽量给予他们方便,让他们能够带动身边的群众共同富裕起来;通过走访村社里贫困户,找出落后的原因以及帮助他们解决一些力所能及的事。

三个月的亲身经历,让我体会到了基层工作的艰辛,同时,也初步掌握了基层工作的诀窍,并能独立处理一些简单的事情。

一年的时间说长不长,说短也不短了,它让我实现了从一名大学生到一名志愿者的转变,从幼稚走向成熟。

来西部前,总是对什么都不在乎,在这里我学会了感谢,感谢当地群众对我的关心和照顾。

这里淳朴但却多灾多难的孩子们在苦难面前的坚强和自信一次又一次地震撼着我的心,让我体会到了什么叫真正的感动。

志愿者的生活是一种历程,只有经历过才知道其中的酸、甜、咸、辣

酸,那是因为我作为志愿者,在农村看见无数需要帮助、让人心碎的人和事,可因为我个人实在太渺小,心有余而力不足,无奈而心酸

甜,那是因为我作为志愿者,因为我们一点付出,身边的点点滴滴在慢慢发生着变化而感到心理上的满足和喜悦。

那是一份牵挂,是一生的积淀

咸,那是因为我作为志愿者,在服务工作中,流过汗,也有过泪水,在汗水和泪水中感到了人生的咸味,感到了泪水和汗水的价值。

辣,那是因为我作为志愿者,感受到了我仅仅在做我应该做的事情,当地群众却给了我许许多多火辣的赞扬,鼓励我继续向前。

我真的希望,有更多的朋友加入到西部计划志愿者的队伍中来,带来爱和智慧,让那些需要帮助的人得到更多的帮助。

我的经历,希望能帮到你

《地心游记》的精彩文段摘抄并写出不少于50字的感想(可从语言鉴赏、人物形象分析等方面谈体会)急

地心游记读后感  “地心游记”是一部描写冒险的书,它出自“科幻小说之父”法国作家凡尔纳之手。

这本书描写地非常精彩,全书讲述李登布洛克教授在一本古老的书籍里偶然得到了一张羊皮纸,发现前人曾到地心旅行,李登布洛克教授决心也做同样的旅行。

他和侄子从汉堡出发,到冰岛请一位向导,他们按照前人的指引,由冰岛的一个火山口下降,经过三个月的旅行,历尽艰险和种种奇观,最后回到了地面。

书中的汉斯,阿克塞尔,李登布洛克教授在地心环游了地球一周,好几次险些失去了宝贵的生命。

他们从鱼龙的嘴里死里逃生,遭遇水源的危机······最终他们终于排除万难,在一次危险的火山喷发中被炙热的炎浆喷到了地中海的斯德隆布利岛。

  在跟随这本书历险的同时,我知道了许多有关地层结构及考古学的知识。

但我认为,地心没有另一个世界,只有岩浆和炽热的地核,因为地心的温度让人无法忍受,所以动植物不可以生存。

  凡尔纳真了不起,一生写了六十六部小说,一共一百多万字,一百多年来,他的作品一直受到世界各国读者的喜爱。

  一本好书,就是一轮太阳。

一千本好书就是一千轮太阳。

灿烂千阳,会照亮我们前进的方向,也会让这个世界所有的秘密在我们面前一览无余的展开

学习英雄少年,知改革开放,做四有新人的论文怎么写

为了担负起时代赋予的历史使命,我们每个青年都应该努力成为社会主义建设所需要的人才,做“有理想、有道德、有纪律、有文化”的四有新人。

学习马列主义、思想和理论和“三个代表”重要思想,可以帮助我们正确认识社会发展规律和国家前途、命运,学会用马克思主义立场、观点和方法分析、解决人生道路上遇到的各种问题,正确看待和处理各种矛盾,从而使自己的人生价值观建立在坚实的理论基础上。

马克思主义的人生价值观作为一种正确的思想意识,既不是天上掉下来的,也不是人脑中固有的,而是从实践中得来的。

人们改造自然、改造社会的实践活动不仅是认识的源泉,而且是检验认识的标准和认识的目的。

只有加强自律,才能使外在的社会规范内化为主体的自觉行为,才能变被动为主动,变消极为积极;只有加强自律,才能保证“吾日三省吾身”,才能自觉从革命导师、革命先烈和英雄模范人物的高尚品德中汲取丰富的精神营养;只有加强自律,才能保证在任何情况下都能做到慎独自守,把握自己;只有加强自律,才能注意识别和抵制个人主义、极端利己主义、拜金主义、享乐主义等各种错误的人生价值观,保证走出坚实正确的人生道路。

祖国的前景无限美好,“四有”新人任务繁重,作为实现祖国现代化的骨干力量,作为新生产力的开拓者,要用自己的聪明才智为实现中华民族的伟大振兴而贡献自己的一切从小树立远大理想。

理想是人生的太阳,是催人奋进的动力。

少年有志,国家有望。

同学们,你们的小脑袋中,有没有问问自己,将来你想做什么呢

但不论今后你们想做什么,都要把个人的奋斗志向同国家的前途命运紧紧联系在一起,把个人今天的成长进步同祖国明天的繁荣昌盛紧紧联系在一起,像奥运健儿一样,为民族争光,为祖国争光。

从小养成优良品德。

这是一个人做人做事的根本。

只要人人心中有国家、心中有集体、心中有他人,我们的社会就会变得更加美好。

你们要继承和发扬中华民族的传统美德,从一点一滴、一言一行做起,逐步养成文明礼貌、团结互助,诚实守信、遵纪守法、勤俭节约、热爱劳动的好品行,努力成为一个品德高尚的人,一个有益于社会、有益于人民的人。

试问你自己:看到地面的纸屑,你弯腰捡起了吗

看到同学在吵架,你上前规劝了吗

你愿意用手中仅有的一元钱去购买小摊上色彩艳丽的小玩意儿,还是愿意把它捐给需要帮助的同学呢

如果这些,你都有正确的选择,那你就可能成为一个优秀的学生、优秀的人。

从小培养过硬本领。

过硬的本领是一个人成功的基础,我们一定要以强烈的求知欲和上进心,发奋读书,刻苦学习各门功课,打好知识基础。

每天问一问自己:今天我学到了什么

我掌握了多少

还有哪些需要继续努力的

还要积极参加形式多样的课外校外活动,接触自然,了解社会,开阔眼界,增长见识,敢于创新,不断提高实践能力。

用自己的真才实学和实际行动回报社会,实现人生价值。

从小拥有铁的纪律。

纪律是做好一切事情的保障,我们要从自己做起,从小事做起、从现在做起。

自觉遵守学校各项规章制度和行为规范。

大体就是这样了,你自己在总结总结

小学数学发展历史有哪些内容

古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。

的确,一个没有数的世界不堪设想。

今天,人们对从1数到10这样的小事会不屑一顾,然而上万年以前,这事可让人们煞费苦心。

在7000年以前,他们甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。

如果当时要有人能数到10,那一定会被认为是杰出的天才了。

后来人们慢慢地会把数字和双手联系在一起。

每只手各拿一件东西,就是2。

数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。

就这样,在逐步摸索中,华夏民族的祖先从混混沌沌的世界中走出来了。

先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。

在金文周<※鼎>中有这样一段话:“东宫乃曰:偿※禾十秭,遗十秭为廾秭,来岁弗偿,则付秭。

”这段话包含着一个利滚利的问题。

说的是,如果借了10捆粟子,晚点还,就从借时的10捆变成20捆。

如果隔年才还,就得从借时的10捆涨到40捆。

用数学式子表达即:10+10=2020×2=40除了在记数和算法上有了较大的进步外,华夏民族的祖先还开始把一些数字知识记载在书上。

春秋时代孔子(公元前551~前479)年修改过的古典书籍之一<周易>中,就出现了八卦。

这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。

到了战国时期,数学知识已远远超出了会数1~3000的水平。

这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。

算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在<管子>、<荀子>、<周逸书>等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。

几何领域,出现了勾股定理。

代数领域,出现了负数概念的萌芽。

最令后人惊异的是,在这一时期出现了“对策论”的萌芽,对策论是现代应用数学领域的问题。

它是运筹学的一个分支,主要是用数学方法来研究有利害冲突的双方,在竞争性的活动中,是否存自己制胜对方的最优策略,以及如何找出这些策略等问题。

这一数学分支是在本世纪第二次世界大战期间或以后,才作为一门学科形成的,可是早在2000多年前,战国时期著名的军事家孙膑(公元前360~前330年)就提出过“斗马术”问题,而这一问题的内容,正反映了对策论中争取总体最优的数学思想。

“斗马术”问题说的是,齐威王要和大将田忌赛马,他们每人各有上、中、下等马各1匹,田忌那3匹马比起齐威王的来,都要略逊一筹,如果用同等级的对应较量法,田忌必输无疑,田忌为此急得不知如何是好。

这时,孙膑从旁点拨,田忌用了孙膑的办法,以2:1取胜齐威王。

孙膑用的是什么方法呢

请看下面的示意图:田忌 齐威王下等马 上等马上等马 中等马中等马 下等马看到这,你不觉得我们的祖先实在是很聪明吗

当历史推进到秦汉时期,祖先们不再往骨头上刻字了。

他们把需要记的事都用毛笔写在竹片上、木片上,这种写了字的竹、木片被称为“简”或“牍”。

这种简或牍以西汉时期的流传下来最多。

从那些汉简中,我们发现,秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。

在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。

这个时期最值得一提的,要算是算筹和十进位制系统了。

有了它们,祖先们就不再为没有合适的计算手段而发愁了。

在我国古代,直到唐朝以前,一直用着这一套计算系统。

算筹的确切起源时间至今还不清楚,只知道,大约在秦汉时期,算筹已经形成制度了。

要明白算筹是怎么回事,先得知道什么叫筹。

筹就是一些直径1分、长6分的小棍儿,这些小棍儿的质料有竹、木、骨、铁、铜等。

它们的功用同算盘珠相仿。

目前,筹的实物已出土多批,1971年在陕西千阳县出土的一座长方形男女合墓中发现,那具男尸的胯部系着一个丝绢带囊,囊内装有一把骨筹。

1980年在石家庄南郊出土的一批早期骨筹,也是挂在死者的腰部。

由引可见,算筹在汉代知识分子中已经通用。

关于如何使用筹,根据记载是这样的:在计算时,将筹摆于特制的案子上,或随便摆放都可。

对于5以下的数字,是几就放几根筹,而对6~9这4个数字,则需要用一根横放或竖放的算筹当5,余下的数则仍是有几摆几根算筹。

为了计算方便,古人规定了纵横表示法。

纵表示法用于个、百、万位数字;横表示法用于十、千位数字,遇到零时,则空一位。

十进位制系统,正是我们今天日常生活中常用的逢十进一法。

就是说,对正整数或正小数而言,以十为基础,逢十进一,逢百进二,逢千进三等等。

十进位制系统的产生,为四则运算的发展创造了良好的条件。

发展繁荣时期编辑中国数学发展繁荣时期大约在西汉末期至隋朝中叶。

这是中国数学理论的第一个高峰期。

这个高峰的标志就是数学专著<九章算术>的诞生。

至少有1800年的《九章算术》,其作者是谁

由谁编纂

至今无从考证。

史学家们只知道,它是中国秦汉时期一二百年的数学知识结晶,到公元1世纪时开始流传使用。

这本书全书共分为九章:①方田(分数四则算法和平面形求面积法)。

②粟米(粮食交易的计算方法)。

③衰分(分配比例的计算方法)。

④少广(开平方和开立方法)⑤商功(立体形求体积法)⑥均输(管理粮食运输均匀负担的计算方法)。

⑦盈不足(盈亏类问题解法,也涉及能够用这种解法处理的其他类型问题)。

⑧方程(一次方程组解法和正负术)。

⑨勾股(勾股定理的应用和简单的测量问题的解法)。

全书收录了246道数学应用题,每道题都分为问、答、术(解法。

有的一题一术,有的一题多术)三部分,而且每章的内容都与社会生产有着密不可分的联系。

这本书的诞生,不仅说明中国古代完整的数学体系已经形成,而且在世界上,当时也很难找到另一本能同媲美的数学专著。

在这一数学理论发展的高峰期,除了《九章算术》这部巨著之外,还出现了刘徽注的《九章算术》以及他撰写的<海岛算经>、<孙子算经>(作者不详)、<夏侯阳算经>、<张丘建算经>和祖冲之的<缀术>等数学专著。

这一时期,创造数学新成果的杰出人物是:三国人赵爽、魏晋人刘徽和南朝人祖冲之。

全盛时期编辑中国数学的全盛时期是隋中叶至元后期。

任何一个国家科学的发达,都有离不开清平开明的社会环境和雄厚的经济基础。

从隋朝中叶到元代末年,由于统治者总结了历代王朝倾覆的教训,采取一系列开明政策,经济得到了迅速发展,科学技术也得到了很大提高,而作为科学技术一部分的数学,也在此时进入了它的全盛时期。

在这一时期,数学教育的正规化和数学人才辈出,是最主要的特点。

隋以前,学校里的教育并不重视数学,因此,没有数学专业一说。

而到了隋朝,这一局面被打破了,在相当于大学的学校里,开始设置算学专业。

到了唐朝,最高学府国子监,还添设了算学馆,其中博士、助教一应俱全,专门培养数学人才。

这时,数学教育的受重视,还反映到了选官问题上。

据古书<唐阙史>记载,有这么一个故事:唐代有个大官,名叫杨损。

他让手下的人推荐一个优秀的办事员加以提升。

手下的人经过千筛百选,最后剩下两个人时,拿不定去掉哪一位好。

因为这两个办事员各方面的条件太一样了:职位相同,“工龄”一样,评语类似……选谁好呢

没办法,只好把矛盾上交了。

杨损得知这个消息之后,也费了不少心思,斟酌再三,最后决定出一道数学题来考考他们。

他对这两位候选人说:“作为办事员,职业决定你们应该有算得快的能力,我出一道题,谁先答对就提升谁。

”后来,先答对的人,理所当然地得到了升迁,而另一个人也心悦诚服地回到了原位。

由此可见,唐代对数学的重视程度。

有了数学专业。

就少不了好教材。

这个时期,有唐朝数学家李淳风(

~公元714年)等人奉政府的命令,经过研读、筛选,规定出了国子监算馆专用教科书。

这套教科书名叫<算经十书>,全套共十部:<周髀算经>、《九章算经>、<孙子算经>、<五曹算经>、<夏侯阳算经>、<张丘建算经>、<海岛算经>、<五经算术>、<缀术>和<缉古算经>。

对这套专业教材,国子监还规定了学习年限,建立了每月一考的制度。

数学教育从这时开始走向逐步完善。

在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,他们是:王孝通、刘焯、一行、沈括、李冶、贾宪、杨辉、秦九韶、郭守敬、朱世杰……科学历来是全人类共同的财富,当时中国的数学水平很快引起了朝鲜、日本的注意,他们开始往中国派留学生、书商。

经过一段学习,在算法引进了关于田亩、交租、谷物交换等知识;在办学中吸取了国子监的课程设置和考试制度。

由此看来,在这一阶段,中国已处于世界数学发展的潮头。

缓慢发展时期编辑接下来在元后期至清中期,中国数学的发展缓慢,和上面讲的数学盛世相比,这一阶段几乎黯然失色。

从宋朝末年到元朝建立中央集权制,中国大地上烽火连年,科学技术不受重视,大量宝贵的数学遗产遭受损失。

明朝建立以后,生产曾在一个短暂时期里有所发展,但马上又由于封建统治的腐败,走向了衰落,直到清朝初年才缓过一口气来。

处在这样一种政治腐败、经济落后、农民起义此起彼伏的环境中,数学跌入低谷也是情理之中的事。

然而世界发展的潮流历来是不等人的,乘中国数学衰落的功夫,西方数学悄悄地追上来,并且反过来渗透进中国。

当西方资本主义开始萌芽的时候,为了寻求发展,天主教传教士、海盗、商人纷纷涌进中国。

他们除了从中国带走了原料、市场、廉价劳动力,也带来了一些文化知识。

16世纪~18世纪来华的传教士中,以意大利人利玛窦(公元1552~公元1610年)影响最大。

在1583~1599年,当他活动于中国肇庆、韶州、南昌、南京等地时,结识了不少中国著名学者,如李贽、徐光启、李之藻等人。

这些人正处于不满空谈理学,渴望富国强兵的思想状态中,为此他们迫切希望世界上的最新科技成果。

而利玛窦的到来,无疑是起了一拍即合的作用。

利玛窦与徐光启和李之藻分别合译了两部数学著作:<几何原本>、<同文算指>。

其中《几何原本》文字通俗,很少疏漏。

尽管当时原著中的拉丁文没有现成的中国词汇可对照,但是徐光启仍是克服困难,创造出许多恰当的译名,使全书达到信、达、雅的水平。

从利玛窦与中国学者合译专著开始,西学东渐的势头越来越大。

那么这个时期中国自己的数学“特产”是什么呢

是珠算。

在隋唐时期,人们已经开始在改进筹算上打主意了。

他们想办法简化筹算方法、编口诀……然而,在迅速发展的数学领域中,筹算法必然会被其他算法所代替。

元朝末期,小巧灵便的算盘出现了。

人们看着这计算简捷、携带方便的新工具欣喜异常,甚至有人把它编到了俗语、诗歌、唱词中。

算盘的出现,很快就引出了珠算口诀和珠算法书籍,16、17世纪,在中国大量的有关珠算的书籍中,最有名的是程大位的《直指算法统宗》。

珠算普及以后,筹算便自动销声匿迹了。

就在中国人发明珠算后不久,1642年,19岁的法国数学家巴斯加(公元1623~1662年)推出了世界上最早的计算机。

目前,虽然世界已进入了计算机时代,然而珠算仍有它的一席之地。

有人试过,在加减法运算中,它的速度甚至超过小型计算器。

中西合流期编辑在中国数学发展缓慢的时候,西方数学已大跨步超前,于是在中国数学发展史上出现了一个中西数学发展的合流期,这一时期约为公元1840年~1911年之间。

前面讲到,16世纪前后,西方传教士带来了一些新的数学知识。

尽管有些洋人怀有个人目的,但不管怎么说,新知识能传进来,这对中国的数学进展总是有好处的。

然而,1723年清朝雍正皇帝登基时,有人就提出大批传教士在华,对他们的统治不利。

皇帝一想,也是。

于是马上下令,除了少数在中国编制新历法的外国人之外,其他传教士一律不留。

这一命令产生的后果是,在以后大约100年的时间里,西方的数学知识也很难“进口”;中国数学家只好把眼光从学习西方新知识,转回到研究自己的旧成果了。

古代数学回光返照的局面没持续多久,鸦片战争失败了,闭关自守的局面被打开了,帝国主义列强纷纷进来瓜分中国,中国一时间沦为半殖民地、半封建的社会。

19世纪60年代开始,曾国藩、李鸿章等为了维护腐败的清政府,发起了“洋务运动”。

这时以李善兰、徐寿、华蘅芳为代表的一批知识分子,作为数学家、科学家和工程师参加了引进西学、兴办工厂、学校等活动,经过他们的不懈努力,奠定了近代科技、近代数学在中国的发展基础。

当1894年“洋务运动”以军事失败而告终时,工厂、铁路、学校却保留了下来,科技知识也在一定的范围内传播了开来。

这一时期的特点是中西合流。

所谓中西合流,并不是全盘西化,数学工作者们在研究传统数学的同时吸收新的方法,一时间,出现了人才济济、著述如林的好势头。

这时,中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。

然而,即使是这样,在世界的同行们之中,中国也仍然没达到领先的地位。

现代数学开端编辑近代数学的开端主要集中在公元1911年~1949年这一时期。

到了19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。

从1847年,以容闳为代表的第一批学生出国后,形成了一个出国留学的高潮。

当时出国留学人数每年要达到数千人之多,他们学成回国后,在中国形成了一支不可忽视的现代科学队伍。

早期出国留学的人中,学数学的人不多,其中做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。

这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。

科研上,1949年以前共发表652篇论文,尽管数量不多,范围也仅限于纯数学方面,但是其水平却不低于世界上的同行们。

要知道,就是这点微薄的成果还是在克服了政治、经济等多方面难以想象的困难下取得的。

教育上,建立了正规的课程设置,数学的学时多于文科,对教科书也进行了更新。

到1932年为止,中国国内各大学已有一支约155人的数学教师队伍,可以开5至10门以上的专业课。

学术交流上,1935年7月成立“中国数学会”,创办<中国数学会学报>和<数学杂志>。

1932年至1936年召开的第9、10次国际数学会议,中国均有人参加。

这时,应邀到华讲学的各国数学家也纷至沓来,给过去闭关自守的数学领域,带来了现代的气息。

建国后的发展编辑1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。

1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。

解放后的18年间,发表论文的篇数占解放前总篇数的3倍多,其中不少论文不但填补了中国过去的空白,有的还达到了世界先进水平。

正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。

在文化大革命的十年中,社会失控,人心混乱,科学衰落。

在数学的园地里,除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。

当10年政治灾难过去之后,人们抬头一看,别的国家数学研究早已是高峰迭起,要想追上又需花费不少力气。

中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。

浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。

1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究……尽管中国目前在世界数学的赛场上已处落后地位,然而,路遥识马力,今后鹿死谁手,仍然是个“x”。

古代成就编辑在中国古代数学发展史中,祖先摘到的金牌足可以开一座陈列馆,这里只开一个“清单”,使读者有一个直观印象。

(1)十进位制记数法和零的采用。

源于春秋时代,早于第二发明者印度1000多年。

(2)二进位制思想起源。

源于《周易》中的八卦法,早于第二发明者德国数学家莱布尼兹(公元1646~1716)2000多年。

(3)几何思想起源。

源于战国时期墨翟的《墨经》,早于第二发明者欧几里德(公元前330~前275)100多年。

(4)勾股定理(商高定理)。

发明者商高(西周人),早于第二发明者毕达哥拉斯(公元前580~前500)550多年。

(5)幻方。

我国最早记载幻方法的是春秋时代的《论语》和《书经》,而在国外,幻方的出现在公元2世纪,我国早于国外600多年。

(6)分数运算法则和小数。

中国完整的分数运算法则出现在《九章算术》中,它的传本至迟在公元1世纪已出现。

印度在公元7世纪才出现了同样的法则,并被认为是此法的“鼻祖”。

我国早于印度500多年。

中国运用最小公倍数的时间则早于西方1200年。

运用小数的时间,早于西方1100多年。

(7)负数的发现。

这个发现最早见于《九章算术》,这一发现早于印度600多年,早于西方1600多年。

(8)盈不是术。

又名双假位法。

最早见于《九章算术》中的第七章。

在世界上,直到13世纪,才在欧洲出现了同样的方法,比中国晚了1200多年。

(9)方程术。

最早出现于《九章算术》中,其中解联立一次方程组方法,早于印度600多年,早于欧洲1500多年。

在用矩阵排列法解线性方程组方面,我国要比世界其他国家早1800多年。

(10)最精确的圆周率“祖率”。

早于世界其他国家1000多年。

(11)等积原理。

又名“祖暅”原理。

保持世界纪录1100多年。

(12)二次内插法。

隋朝天文学家刘焯最早发明,早于“世界亚军”牛顿(公元1642~1727)1000多年。

(13)增乘开方法。

在现代数学中又名“霍纳法”。

我国宋代数学家贾宪最早发明于11世纪,比英国数学家霍纳(公元1786~1837)提出的时间早800年左右。

(14)杨辉三角。

实际上是一个二项展开式系数表。

它本是贾宪创造的,见于他著作《黄帝九章算法细草》中,后此书流失,南宋人杨辉在他的《详解九章算法》中又编此表,故名“杨辉三角”。

在世界上除了中国的贾宪、杨辉,第二个发明者是法国的数学家帕斯卡(公元1623~1662),他的发明时间是1653年,比贾宪晚了近600年。

(15)中国剩余定理。

实际上就是解联立一次同余式的方法。

这个方法最早见于《孙子算经》,1801年德国数学家高斯(公元1777~1855)在《算术探究》中提出这一解法,西方人以为这个方法是世界第一,称之为“高斯定理”,但后来发现,它比中国晚1500多年,因此为其正名为“中国剩余定理”。

(16)数字高次方程方法,又名“天元术”。

金元年间,我国数学家李冶发明设未知数的方程法,并巧妙地把它表达在筹算中。

这个方法早于世界其他国家300年以上,为以后出现的多元高次方程解法打下很好的基础。

(17)招差术。

也就是高阶等差级数求和方法。

从北宋起中国就有不少数学家研究这个问题,到了元代,朱世杰首先发明了招差术,使这一总是得以解决。

世界上,比朱世杰晚近400年之后,牛顿才获得了同样的公式。

我也是网上查的,希望能帮到你

党员在非公企业中模范带头作用发挥情况的调研报告

结局告诉我们刺不破的盾和什么都刺破的矛是不可能同时存在的。

  出自:《韩非子 难一》。

  原文:楚人有鬻盾与矛者,誉之曰:  矛盾  “吾盾之坚,物莫能陷也。

”又誉其矛曰:“吾矛之利,于物无不陷也。

”或曰:“以子之矛,陷子之盾,何如

”其人弗能应也。

夫不可陷之盾与无不陷之矛不可同世而立。

   白话翻译: 有个卖盾和矛的楚国人,夸他的盾说:“我的盾坚固无比,任何锋利的东西都穿不透它。

”又夸耀自己的矛说:“我的矛锋利极了,什么坚固的东西都能刺穿。

”有人问他:“用您的矛来刺您的盾,结果会怎么样呢

”那人便答不上话来了。

刺不破的盾和什么都刺得破的矛,是不可能同时存在的。

  话翻译: 有个卖矛和盾的人,称赞他的盾的坚固:“任何锋利的东西都穿不透它。

”一会儿又赞美自己的矛,说:“我的矛锋利极了,什么坚固的东西都能刺穿。

”有人问他:“用你的矛来刺你的盾,结果会怎么样呢

”那人便答不上话来了。

刺不破的盾和什么都刺得破的矛,这是不可能同时存在的。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片