
数学建模论文?
听数学建模课的感想 今年,我选修了数学建模这门课,因为我感觉数学建模是非常有用的一门课,而且我对数学建模也非常感兴趣。
在学习的过程中,我获得了很多知识,对我有非常大的提高。
同时我有了一些感想和体会。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用简单的数学工具)(4)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
(7)模型应用:应用方式因问题的性质和建模的目的而异。
我还了解到学习数学建模的意义是:1、培养创新意识和创造能力2、训练快速获取信息和资料的能力3、锻炼快速了解和掌握新知识的技能4、培养团队合作意识和团队合作精神5、增强写作技能和排版技术6、荣获国家级奖励有利于保送研究生7、荣获国际级奖励有利于申请出国留学在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。
特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧
通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。
是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。
我相信,我会进步更多的
我永远不会忘了我的数学建模课
这是我写的,你看能不能用参考数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
(5) 模型分析:对所得的结果进行数学上的分析。
(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
(7) 模型应用:应用方式因问题的性质和建模的目的而异。
我还了解到学习数学建模的意义是:1、培养创新意识和创造能力2、训练快速获取信息和资料的能力3、锻炼快速了解和掌握新知识的技能4、培养团队合作意识和团队合作精神5、增强写作技能和排版技术6、荣获国家级奖励有利于保送研究生7、荣获国际级奖励有利于申请出国留学在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。
特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧
通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。
是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。
我相信,我会进步更多的
我永远不会忘了我的数学建模课
求关于数学建模的1500字以上的优秀论文
论文范文--利用数学建模解数学应用题 数学建着人类的进步,科技的发展和社日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。
强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。
数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。
本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。
数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。
这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。
如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。
是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。
往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。
必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。
因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。
可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。
对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。
要进行分析、加工和作出假设,然后才能建立数学模型。
如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。
如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。
数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。
建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。
结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。
有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。
所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。
同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。
因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
学习数学建模的感想
这个没必要把 字数要求应该不是太多 自己写写嘛 不能什么都找别人要阿
学习数学建模的心得体会
一年一度的全国数学建模大赛在今年的9 月22 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1. 团队精神:团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。
切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2. 有影响力的leader:在比赛中,leader 是很重要的,他的作用就相当与计算机中的CPU,是全队的核心,如果一个队的leader 不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做A 题,有人想做B 题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader 应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3. 合理的时间安排:做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。
你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4. 正确的论文格式:论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6 要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5. 论文的写作:我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。
一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6. 算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学建模常用算法,仅供参考:1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质,也希望广大同学能够积极参与到这项活动当中来。
求学习数学建模的感想,急
近来有数位询问我关于数学建模的种种问题,虽然是参与其中,但最终一无所获,不过很感谢你们的信任
接下来的很长时间里我的任务很重,特此集中地就我所知向你们介绍一下,希望不会误导你们:睡觉不出意外应该会分两个阶段进行将近一个月的基本知识的培训,三人组队,需要的是默契和坚持
依我拙见,一人担当组长负责全组的各项策划,进度安排和任务分配,信息获取;三人中不乏理解性强,反应快者;加上长于文字作用,电脑技术;所有的这些加上恒久的耐力和灵通的信息以及机会的把握,我想已经足够,其他的都是浮云,在此强调一下消息的获取一定要灵通,不然前期的辛苦准备不经意就化为乌有了,不要到被团队所抛弃才感到后悔莫及,还有就是在这种场合可以有厚脸皮的。
记住让你们的团队凝聚到一起
期待你们的好成绩
算法与建模的困难在于数学还是技术,或是感想
以语音识别的算法及建模为例,来看看会遇到哪些现实难点。
语音如一段很短的乐曲。
音高可以变化,D调上不去就改C调,绝对音高变化了,而相对音高依然稳定不变。
依然可以判断出,这两段音高不同的乐曲,确是同一段乐曲。
音色也可以变化,小提琴《梁祝》与电子琴《梁祝》,音色差别很大,但依然可以得出判断:是同一段乐曲。
音量变化更不影响判断其是同。
语音识别的算法及建模所依赖的,就是这个相对性现象。
充分理解后,就叫做音阶相对性原理。
音阶相对关系不变,固定了乐曲。
并可实现重复。
语音也如此。
理解了这个之后,就有了解决语音识别问题的大致方向——1、找到机器可识别的最小的音阶。
2、发现语音中固定的音阶相对变化顺序。
3、发现音阶的三维现象。
4、音阶三维数码化。
这样就实现了固定其音。
上述4条显然不需要很高深的数学水平。
高中数学做算法就足够了。
数学不是难点。
技术,肯定需要。
声AD转码需要探索出适应新算法的新技术。
但这并不很难。
感想
是的,需要感想。
思考上述四条语音问题方向应得出如下感想:必须对声音开始到结束的全部详细过程,有清晰的数码化认识。
这就是最大的难点。



