欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 话语 > 可以调频段的话筒整理100条

可以调频段的话筒整理100条

时间:2018-09-21 18:06

一、目标要求

1. 能从日常生活的直接感受中知道乐音有音调、响度和音色的区别。 常识性知道音调的高低与声源振动的频率有关,响度的大小与声源振动的振幅和离声源的远近有关,不同发声体发出的音色不同。

2. 通过观察声波的图形,初步学习利用仪器进行探究,观察图形进行分析的方法。

3. 通过观察波的图形,使学生初步体会到科学探究不能光凭人的感观,还要借助于仪器,初步建立利用仪器进行测量的观念。

二、重点和难点

难点音色的认识

三、教学过程

1.情景创设、提出问题

放音乐,提出同样是乐音它们有什么区别的问题。启发学生自己得出声音有大小、高低之分,不同乐器发出的声音是有区别的。然后总结出乐音的三特征。再提出这些特征与声源振动情况有什么关系的问题。

2.过程展开

(1)实验探究音调的高低

组织学生用刻度尺做此实验。然后进行讨论:刻度尺伸出桌面的长度不同,所发生的振动现象有什么不同?由此听到的声音有什么不同?主观感受的音调高低和刻度尺振动的快慢有什么关系?

再次提出频率的概念,并复习其单位。强调一下音调决定于声源振动的频率,一般情况下声源振动的频率大,主观感受的音调就高。

指导学生阅读“一些声的频率表”,重温人耳可听声的`频率范围及其对超声、次声的定义。

(2)设计响度的演示

①学生根据生活经验比较容易猜测到响度与物体振动的幅度有关,因此可以再由学生通过自己设计的实验进行证实,例如利用将一根橡皮筋拉紧,轻轻拨动和重拨听一听所发出的声音有什么区别?

②通过敲响队鼓,敲击由轻逐渐加重,让学生观察鼓面上泡沫塑料小球的跳动的变化,同时听鼓声的变化。启发学生自己得到响度与振幅的关系。

③另外,轻轻摇动响铃,使前排学生可听到铃声。后排学生几乎听不见,表明响度还与离声源的距离有关。

(3)音色

想播放不同的乐器演奏的同一个调的同一首曲子,让学生区分是什么乐器演奏的,进而向学生提出问题:你是凭什么区分出不同的乐器呢?学生会感性地认识到在音调响度都相同时不同声源发出声音的不同就是音色的不同。

(4)观察声波的图形

观察声波的图形的实验,主要目的是让学生比较形象地认识声波,同时引起他们学习的兴趣。

介绍:话筒把声信号转变为电信号,输入示波器后可在荧光屏上显示出相应的图象。通过演示,只要让学生知道看不见的声波可通过仪器显示,借助仪器是科学研究所必需的。

让学生通过观察两个频率不同的音叉发出声的波形,获得具体的感性认识。使学生知道不同频率的声音在波形上有什么区别。然后可让不同的学生在话筒前发声,观察其波形。用不同的力敲击同一音叉,观察波形,使学生知道不同响度的声音在波形上的区别。指导学生观察不同乐器产生的声波波形的区别。波形图包含了乐音的三特征。

3.作业。

一、校园无线广播对大学生的影响

(一)提高大学生思想政治教育

利用校园广播的方便性和及时性,对大学生进行思想政治教育方面的宣传和教育,以提高大学生的思想政治觉悟和素质是广播教育德育功能的立根之本。思想政治素质是当代大学生的基本文化素质的一部分,该素质被认为是大学生所应当具备的作为社会主义事业的建设者和接班人的诸多素质中最核心内容。高校校园广播在通过对大学生进行思想政治教育以提高其思想政治素质方面,具有社会媒介以及新兴媒体无法达到的优势。第一:校园广播覆盖范围极其广泛,学生们可以在校园任意角落接收广播传递的信息,利用奔走在各教学楼的闲余时间收听各种类型的广播节目,其便捷性、参与度较高。

(二)传递信息,传播正能量

校园广播同时具有领域可控性强、操作简单方便快速、内容翔实并且贴近学生生活等优点,校园广播选取时下最新潮的流行元素最新鲜的实时资讯及时广播,以最简洁的方式传递准确而快速的信息。节目内容适合学生特点,容易引起学生兴趣与共鸣。在节目内容选取上,既可以通过报道国内国际的信息等信息使广大师生“治国平天下”,也可以通过报道本校内发生的种种事件方便师生“修身齐家”,体现当代大学生实事求是的作风。如果这样,校园广播的内容能够拉近和听众之间的距离感,消除小众化带来的负面情绪。而且,一篇具有客观性的报道对于逆反心理较强的大学生比较容易接受更有说服力,大学生应该学会多角度看待问题,用辩证的眼光审时度势,以便日后踏入社会得以立足。在时间安排上,校园广播可以根据实际情况满足师生的需求。学生可以在清晨去教室的路上获取最新的资讯,了解国内国际主要新闻,适当的科普类或音乐类节目也可以普及知识让学生以积极的态度面对新的一天,校园光播无疑是一个有效的传播工具。午播时段,播放轻音乐,美妙的旋律立即驱走师生一上午工作学习的辛劳,放松身心,校园广播适时创造了一种愉悦的午休氛围,又能够提升一定的音乐素养。在黄金时段中通过传播各种信息促进学生对学校内各种活动进行了解,对各种优秀人物的典型事件进行理解,对不良现象和不良行为提出批评,从而激发学生对优秀事件和榜样的学习,以及促进在校园内推行优良的学习工作作风,积极传播校园正能量。通过这一天的传播,师生便可对国内国际事件以及校园事件做一个整体了解。

(三)利用校园广播的迅捷性营造良好的交流平台

各高校有属于本校的独特的文化特征与文化传统。校园广播因其远优于社会传媒和网络传媒的迅速性与方便性以引起管理者的注意,做到及时发现问题解决问题,提高学校各部门的工作效率和工作热情,提高学校各办公室工作人员开展工作的主动性、积极性和创造性。以《公民道德建设实施纲要》的宣传工作为例,校园广播可以及时地对纲要的知识和内容的理解进行宣传,推动全校师生对纲要的积极学习、充分讨论和理智分析。校园广播传递的是大学生内心的声音,学生们可以通过这个平台提出校园建设建议,吐露心声分享故事,既能锻炼大学生心理健康又让学生养成勤于思考发现问题的思维习惯。校园广播的工作核心是为学校工作的开展和发展进行服务,每件重大工作的工作筹划、工作准备、前期的工作宣传与后期的工作开展均离不开校园广播的参与。

(四)帮助大学生建立良好的生活习惯

校园广播对大学生不仅能起到灌输教育提高其知识的作用,还可以通过潜移默化改变其行为与生活习惯。当校园广播工作时,声音不由自主传入耳中,既贴近学生日常生活,又会以其知识性、准确性、趣味性丰富大学生校园生活。校园广播电台通过生动形象的讲解、深入浅出的说理式来教育引导学生,使学生尽早形成与社会主义市场相适应的自主、自立、自强的精神,全面提高其思想素质。只要能够深入到学生中去,善于挖掘出“情感点”、“兴奋点”和“兴趣点”,从而真正贴近大学生生活,就能吸引更多人参与其中。必须加强校园广播的自身建设,才能更好的发挥校园广播在思想教育中的作用,真正提高学生综合素质。

二、校园无线调频广播建设存在的问题

(一)设备老化问题

校园广播的设备大多都存在设备老化的问题,这在各大高校都是普遍存在的,因为这些设备使用周期过长,且使用频率远比校园其它设备要高。话筒,连接线,耳机,调音台这些基础设备几乎每天都要使用,设备可能磨损较为严重。电脑作为播放节目不可或缺的`工具,更新速度很快,电脑的使用存在系统老旧,硬盘不足,内部硬件老化等为题,一旦出现死机现象,便会影响节目正常播出。露天广播的音柱长时间暴露于室外,风吹日晒,长此以往,也会出现故障。较好的硬件设施是无线调频广播系统全面,正常,高效发挥其作用的重要保障。

(二)传统调频电台的技术与应用的滞后性

传统调频电台因其技术方面的落后性导致其在应用上的信息滞后性。传统调频电台的信息多储存在磁带、光盘等非数字化存储媒体中。这种落后信息存储方式既不利于信息的检索也不利于信息的播放。而且无法直接利用丰富的校园网络资源。

(三)电台无线电发射频率的偏移

电台的无线电发射频率必须与无线耳机的接收频率始终保持一致,若不相同,就会影响收听效

果,产生杂音。但是由于电子产品的发射终端会因长期暴漏在室外而使发射频率产生偏移,导致系统无法正常广播。但随着新技术特别是频率合成技术的应用,电台的无线电发射频率的稳定性得到了极大的改善,因此频率偏移问题便可以得到改善。

(四)话筒受外界干扰

校园无线调频广播在播放期间,可能会受到外界信号干扰,产生杂音,影响广播质量,特殊时还会出现短暂的无音现象。当这种校园广播的无线电故障情况出现时,可通过调校广播电台内的SQUEICH静躁器来消减干扰信号。具体的方法和流程如下,首先要调整无线电天线位置并保证无线电发射机处于关机状态。其次,要锁死接收机的输出增益功能。最后,利用无感应螺丝刀顺时针调校SQUEICH静躁器至所有干扰信号消失,并在所有的干扰信号消失后,再顺时针稍稍转动少许。

三、校园无线调频广播未来的计划

(一)加强与听众的互动

校园广播作为本校的校园媒体,加强与听众的互动对于自身而言存在必要性,同时也是在校大学生对校园广播的合理要求。与听众的互动是必须的,互动可以采用电话、短息、邮件等,网络也是一个很好的平台。校园广播可以利用人人,微信,微博等听众都会使用的方式进行互动,既方便又有效,还能增强趣味性。因此互动是必须建立的,并应该让其充分发挥作用。

(二)增强内部的交流

对于校园广播电台而言,内部的沟通交流同样重要,在校园广播电台的队伍中,新的台员应该多向有工作经验的前届台员学习,加强内部交流,不同的节目之间相互借鉴相互交流,各取所需,才能相互学习进步,提高广播电台的质量。节目直播时,导播与播音的沟通配合更是保证节目完美播出的关键。

(三)弘扬校园文化

广播在校园文化中也起到了至关重要的作用,与此同时也在一定程度上让学生耳濡目染,锻炼了同学们“听”和“写”的能力,在课余时间丰富了精神世界,扩大了课外知识,接触了在课本上,课堂上无法接触到的知识。例如加强了播音,采写,编辑和网络等课外实践能力,在校园中一定范围内起到了宣传作用,有力地推动了校园文化的建设和传播,充分发挥了学校广播站在校园文化建设中的积极作用,促进学校良好校园文化氛围的形成,使之成为校园的特色文化建设之一。校园广播系统的建设,是为教育教学服务、为促进学校教育现代化服务。建设紧密结合教育教学的需要和经济承受能力的实际,应本着高效、适用的原则,严格规范校园广播系统。认清目前校园广播系统建设的状况及未来发展趋势是满足层次的教育信息化需求,为教育教学提供划时代的变革服务,为教育教学的革新变通提供决策性依据的根本性实现平台。因此,一个完备的校园网,应在教师备课教学、学生学习、教务管理、行政管理、资源信息、对外交流等方面发挥辅助、支持功能、为学校的教学、管理日常办公、内外交流等各方面提高全面、切实的支持。我们应该通过校园广播的建设促进校园文化的发展,促进学生的身心发展使之具备社会所需的各种心理素质、知识素质以及行为习惯。这不仅仅是为满足当前教育改革所需,更是可以全面提高我国国民文化素质的基础。同时校园广播也对教育教学的现代化、教育管理手段的多样化、教育教学质量的提高具有深远意义。

篇一:实验十一:PCM编译码实验报告

实验报告

哈尔滨工程大学教务处 制

实验十一 PCM编译码实验

一、实验目的

1. 掌握PCM编译码原理。

2. 掌握PCM基带信号的形成过程及分接过程。

3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。

二、 实验仪器

1. 双踪示波器一台 2. 通信原理Ⅵ型实验箱一台

3. M3:PCM与ADPCM编译码模块和M6数字信号源模块 4. 麦克风和扬声器一套

三、实验步骤

1.实验连线

关闭系统电源,进行如下连接:

非集群方式

2. 熟悉PCM编译码模块,开关K1接通SL1,打开电源开关。 3.用示波器观察STA、STB,将其幅度调至2V。

4. 用示波器观察PCM编码输出信号。

当采用非集群方式时:

测量A通道时:将示波器CH1接SLA(示滤波器扫描周期不超过SLA的周期,

以便观察到一个完整的帧信号),CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。

测量B通道时:将示波器CH1接SLB,(示滤波器扫描周期不超过SLB的周期,

以便观察到一个完整的帧信号),CH2接PCM B OUT,观察编码后的数据与时隙同步信号的关系。

当采用集群方式时:将示波器CH1接SL0,(示滤波器扫描周期不超过SL0的周期,

以便观察到一个完整的帧信号),CH2分别接SLA、PCM A OUT、SLB、PCM B OUT以及PCM_OUT,观察编码后的数据所处时隙位置与时隙同步信号的关系以及PCM信号的帧结构(注意:本实验的帧结构中有29个时隙是空时隙,SL0、SLA及SLB的脉冲宽度等于一个时隙宽度)。开关S2分别接通SL1、SL2、SL3、SL4,观察PCM基群帧结构的变化情况。

5. 用示波器观察PCM译码输出信号

示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(有相位差)。

示波器的CH1接STB,CH2接SRB,观察这两个信号波形是否相同(有相位差)。

6. 用示波器定性观察PCM编译码器的动态范围。

将低失真低频信号发生器输出的1KHZ正弦信号从STA-IN输入到MC145503编码器。示波器的CH1接STA(编码输入),CH2接SRA(译码输出)。将信号幅度分别调至大于5VP-P、等于5VP-P,观察过载和满载时的译码输出波形。再将信号幅度分别衰减10dB、20dB、30dB、40dB、45dB,观察译码输出波形。

篇二:pcm编译码实验报告

项目二

实验十一 PCM编译码实验

一、 实验目的

1. 掌握PCM编码原理。

2. 掌握PCM基带信号的形成过程及分接过程。

3. 掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。

二、 实验仪器

1. 双踪示波器一台

2. 通信原理VI型实验箱一台

3. M3:PCM与ADPCM编译码模块和M6数字信号源模块

4. 麦克风和扬声器一套

三、 实验原理及基本内容

1.点到点PCM多路电话通信原理

脉冲编码调制(PCM)技术与增量调制(△M)技术已经在数字通信系统中得到广泛应用。当信道噪声较小时一般用PCM,否则一般用△M。目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在A律和u律两种编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同,而△M在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。

点到点PCM多路电路通信原理可用11—1表示。对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。

本实验模块可以传输两路话音信号。采用MC145503编译器,它包括了图11—1中的收、发低通滤波器及PCM编译码器。编码器输入信号可以是本实验系统内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。本实验模块中不含电话机和混合电路,广义信道时理想的,即将复接器输出的PCM信号直接送给分接器。

2.PCM编译模块原理

本模块的原理方框图及电路图如图11-2及图11-3所示。

BSPCM基群时钟信号(位同步)测试点

SL0 PCM基群第0个时隙同步信号

SLA 信号A的抽样信号及时隙同步信号测试点

SLB 信号B的抽样信号及时隙同步信号测试点

SRB 信号B译码输出信号测试点

STA输入到编码器A的信号测试点

STB输入到编码器B的信号测试点

PCM_OUTPCM基群信号输出点

PCM_IN PCM基群信号输入点

PCM A OUT 信号A编码结果输出点

PCM B OUT 信号B编码结果输出点

PCM A IN 信号A编码结果输入点

PCM B IN 信号B编码结果输入点

本模块上有S2这个拔码开关,用来选择SLB信号为时隙同步信号SL1、SL3、SL5、SL6中的任一个。

图11-2各单元与图11-3中的元器件之间的对应关系如下:

晶振 X1:4.096MHZ晶振

分频器1/2U1:74LS193; U6: 74HC4060

抽样信号产生器 U5:74HC73; U2:74HC164

PCM编译器A U10:PCM编译码集成电路MC145503

PCM编译器B U11:PCM编译码集成电路MCL45503

帧同步信号产生器 U3:8位数据产生器74HC151; U4:A:与门7408

复接器U9:或门74LS32

晶振、分频器1、分频器2及抽样信号(时隙同步信号)产生器构成一个定时器,为两个PCM编译码提供2.048MHZ的时钟信号和8KHZ的时隙同步信号。在实际通信系统中,译码器的时钟信号(即位同步信号)及时隙信号(即帧同步信号)应从接收到的数据流中提取,方法如实验五及实验六所述。此处将同步器产生的时钟信号及时隙同步信号直接送给译码器。

由于时钟频率为2.048MHZ,抽样频率为8KHZ,故PCM-A及PCM-B的码速率都是2.048MB,一帧中有32个时隙,其中一个时隙为PCM编码数据,另外31个时隙都是空时隙。

PCM信号码速率也是2.048MB,一帧中的32个时隙有29个是空时隙,第0个时隙为帧同步码(X1110010)时隙,第2个时隙为信号A的时隙,第1(或第3、第5、或第6—由拔码开关S2控制)时隙为信号B的时隙。

本实验产生的PCM信号类似于PCM基群信号,但第16个时隙没有信令信号,第0时隙中的信号与PCM基群的第0时隙的信号也不完全相同。

由于两个PCM编译码器用同一个时钟信号,因而可以对他们进行同步复接。又由于两个编码器输出数据处于不同时隙,故可对PCM-A和PCM-B进行线或。本模块中用或门74LS32对PCM-A、PCM-B及帧同步信号进行复接。在译码之前,不需要对PCM进行分接处理,译码器的时隙同步信号实际上起到了对信号的分路作用。

在通信工程中,主要用动态范围和频率特性来说明PCM编译码器的性能。

动态范围的定义是译码器输出信噪比大于25db时允许编码器输入信号幅度的变化范围。PCM编译码器的动态范围应大于图11-6所示的CCITT建议框架。

当编码器输入信号幅度超过其动态范围时,出现过载噪声,故编码输入信号幅度超过大时量化信噪比急剧下降。MC145503编译码系统输入信号的最大幅度为5V。

由于采用对数压扩技术,PCM编译码系统可以改善小信号的信噪比,MC145503可采用A律13折线对信号进行压扩。当信号处于某一段时,量化噪声不变,因此在同一段落内量化噪声比随信号幅度减小而下降。13折线压扩特性曲线将正负信号分为8段,第1段信号最小,第8段信号最大。当信号处于第一,二段时,量化噪声不随信号幅度变化,因此噪声不随信号幅度变化,因此信号太小时,量化信噪比会小于25db,这是动态范围的下限。MC145503编译码系统动态范围内输入信号最小幅度约为0.025Vpp。

常用1KHZ的正弦信号作为输入信号来测量PCM编译码器的动态范围。

语音信号的抽样信号频率为8KHZ,为了不发生频谱混叠,常将语音信号经截止频率为3.4khz的低通滤波器处理后在进行A/D处理。语音信号的最低频率一般为300hz。MC145503编码器的低通滤波器和高通滤波器决定了编译码系统的频率特性,当输入信号频率超过这两个频率范围时,译码输出信号幅度迅速下降。这就是PCM编译码系统频率特性的含义。

四、 实验步骤

1. 实验连线

关闭系统电源,进行如下连接:

3. 用示波器观察STA、STB,将其幅度调至2V。

4. 用示波器观察PCM编码输出信号。

当采用非集群方式时:

测量A通道时:将示波器CH1接SLA,CH2接PCM A OUT,观察编码后的数据与时隙同步信号的关系。

测量B通道时:将示波器CH1接SLB,CH2 接PCM B OUT,观察编码后的数据与时隙同步信号的关系。

当采用非集群方式时:将示波器CH1接SL0,CH2分别接SLA、PCM A OUT、SLB、PCM B OUT以及PCM_OUT,观察编码后的数据所处时隙同步信号的关系以及PCM信号的帧结构。开关分别接通SL1、SL2、SL3、SL4观察PCM基群帧结构的变化情况。

5.用示波器观察PCM译码输出信号

示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(相位差)。 示波器的CH1接STB,CH2接SRB,观察这两个信号波形是否相同(相位差)。

6.用示波器定性观察PCM编译码器的动态范围。

将低失真频信号发生器输出的1khz正弦信号从STA-IN输入到MC145503编码器。示波器的CH1接STA,CH2接SRA。将信号幅度分别调至大于5Vpp、等于5Vpp,观察过载和满载时的译码输出波形。在将信号幅度分别减至10db、20db、30db、40db、45db、50db,观察译码输出波形。

7.两人通话实验

本模块提供两个人的通话信道。由于麦克风输出的信号幅度比较小,需放大到2Vpp左右再由STA和STB输入到两个编码器。译码器输出信号由SRA和SRB输出,将幅度较大,需衰减到适当值后再送给扬声器。

在话筒输入放大电路中,可以通过调整可调电阻R18来改变输出增益。

在语音输出放大电路中,可以通过调整可调电阻R12和R22来改变输出音量。 在实验时,只需将话筒输出信号从MIC_OUT端口连接到STA,再将译码后的语音信号从SRA连接到MIC_IN即可,但需将STA或STB端口的原有连接去除。

五、 实验记录与分析

1.用示波器观察STA、STB,将其幅度调至2V。

实验中,从示波器中可以读出,输入编码器的信号频率存在fA=fB,且频率等于1Khz,幅度等于2V。

2. 用示波器观察PCM编码输出信号。

分析如下:

SL0是PCM基群的'时隙同步信号,信号A,B信号插入到相应的时隙,编码输出的位置仍在相应的时隙。编码输出总会延迟与输入。其中第2个时隙是A信号,2,5,7时隙

篇三:32路PCM帧结构

为了提高通信系统信道的利用率,话音信号的传输往往采用多路复用通信的方式。这里所谓的多路复用通信方式通常是指:在一个信道上同时传输多个话音信号的技术,有时也将这种技术简称为复用技术。复用技术有多种工作方式,例如频分复用、时分复用以及码分复用等。

频分复用是将所给的信道带宽分割成互不重叠的许多小区间,每个小区间能顺利通过一路信号,在一般情况下可以通过正弦波调制的方法实现频分复用。频分复用的多路信号在频率上不会重叠,但在时间上是重叠的。

时分复用是建立在抽样定理基础上的。抽样定理使连续(模拟)的基带信号有可能被在时间上离散出现的抽样脉冲值所代替。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙,利用这种空隙便可以传输其他信号的抽样值。因此,这就有可能沿一条信道同时传送若干个基带信号。

码分复用是一种以扩频技术为基础的复用技术,在第九章中将详细地进行介绍。

在这部分中,将在分析时分复用(TDM)技术的基础上,研究并说明PCM时分多路数字电话系统的原理和相关参数。

6.3.1 PAM时分复用原理

为了便于分析时分复用(TDM)技术的基本原理,这里假设有3路PAM信号进行时

分多路复用,其具体实现方法如图6-27所示:

图6-27 3路PAM信号时分复用原理方框图

从图6-27可以看到,各路信号首先通过相应的低通滤波器,使输入信号变为带限信号。然后再送到抽样开关(或转换开关),转换开关(电子开关)每秒将各路信号依次抽样一次,这样3个抽样值按先后顺序错开纳入抽样间隔之内。合成的复用信号是3个抽样消息之和,如图6-28所示。由各个消息构成单一抽样的一组脉冲叫做一帧,一帧中相邻两个抽样脉冲之间的时间间隔叫做时隙,未能被抽样脉冲占用的时隙部分称为防护时间。

图6-28 3路时分复用合成波形

多路复用信号可以直接送入信道传输,或者加到调制器上变换成适于信道传输的形式后再送入信道传输。

在接收端,合成的时分复用信号由分路开关依次送入各路相应的重建低通滤波器,恢复出原来的连续信号。在TDM中,发送端的转换开关和接收端的分路开关必须同步。所以在发端和收端都设有时钟脉冲序列来稳定开关时间,以保证两个时钟序列合拍。

根据抽样定理可知,一个频带限制在范围内的信号,最小抽样频率值为2,这时就可利用带宽为的理想低通滤波器恢复出原始信号来。对于频带都是的N路复用信号,它们的独立抽样频率为,如果将信道表示为一个理想的低通形式,则为了防止组合波形丢失信息,

传输带宽必须满足

6.3.2 时分复用的PCM系统(TDM—PCM)

PCM和PAM的区别在于PCM要在PAM的基础上经过量化和编码,把PAM中的一个抽样值量化后编为k位二进制代码。图6-29表示一个只有3路PCM

复用的方框图。

图6-29 3路时分复用PCM原理方框图

6-29 (a)表示发端原理方框图。话音信号经过放大和低通滤波后得到

、和,再经过抽样得到3路PAM信号、和,它们在

时间上是分开的,由各路发送的定时取样脉冲进行控制,然后将3路PAM信号一起加到量化和编码器内进行量化和编码,每个PAM信号的抽样脉冲经量化后编为k位二进制代码。编码后的PCM代码经码型变换,变为适合于信道传输的码型(例如HDB3码),最后经过信道传到接收端。

图6-29 (b)为接收端的原理方框图。当接收端收到信码后,首先经过码型变换,然后加到译码器进行译码。译码后得到的是3路合在一起的PAM信号,再经过分离电路把各路PAM信号区分开来,最后经过放大和低通滤波还原为话音信号。

TDM—PCM的信号代码在每一个抽样周期内有个,这里N表示复用路数,k

表示每个抽样值编码的二进制码元位数。因此,二进制码元速率可以表示为,也就是。但实际码元速率要比大些。因为,在PCM数据帧当中,除了话音信号的代码以外,还要加入同步码元、振铃码元和监测码元等。

6.3.3 32路PCM的帧结构

对于多路数字电话系统,国际上已建议的有两种标准化制式,即PCM 30/32路(A律压扩特性)制式和PCM 24路(μ律压扩特性)制式,并规定国际通信时,以A律压扩特性为准(即以30/32路制式为准),凡是两种制式的转换,其设备接口均由采用μ律特性的国家负责解决。因此,我国规定采用PCM 30/32路制式,其帧和复帧结构如图6-30所示。

图6-30 PCM 30/32路帧和复帧结构

从图6-30中可以看到,在PCM 30/32路的制式中,一个复帧由16帧组成;一帧由32个时隙组成;一个时隙为8位码组。时隙l~15,17~3l共30个时隙用来作话路,传送话音信号,时隙0(TS0)是“帧定位码组”,时隙16(TS16) 用于传送各话路的标志信号码。

从时间上讲,由于抽样重复频率为8000Hz,因此,

抽样周期为,这也就是PCM 30/32的帧周期;一复帧由16个帧组成,这样复帧周期为2ms;一帧内要时分复用32路,则每路占用的时隙为;每时隙包含8位码组,因此,每位码元占488ns。

从传码率上讲,也就是每秒钟能传送8000帧,而每帧包含32×8=256bit,因此,总码率为256比特/帧×8000帧/秒=2048kb/s。对于每个话路来说,每秒钟要传输8000个时隙,每个时隙为8bit,所以可得每个话路数字化后信息传输速率为8×8000=64kb/s。

从时隙比特分配上讲,在话路比特中,第l比特为极性码,第2~4比特为段落码,第5~8比特为段内码。对于TS0和TS16时隙比特分配将分别予以介绍。 TS0时隙比特分配。为了使收发两端严格同步,每帧都要传送一组特定标志的帧同步码组或监视码组。帧同步码组为“0011011”,占用偶帧TS0的第2~8码位。第l比特供国际通信用,不使用时发送“1”码。在奇帧中,第3位为帧失步告警用,同步时送“0”码,失步时送“1”码。为避免奇TS0的第2~8码位出现假同步码组,第2位码规定为监视码,固定为“1”,第4~8位码为国内通信用,目前暂定为“1”。

TS16时隙用于传送各话路的标志信号码,标志信号按复帧传输,即每隔2ms传输一次,一个复帧有16个帧,即有16个“TS16时隙”(8位码组)。除了F0之外,其余Fl~F15用来传送30个话路的标志信号。如图6-29所示,每帧8位码组可以传送2个话路的标志信号,每路标志信号占4个比特,以a、b、c、d表示。TS16时隙的F0为复帧定位码组,其中第一至第四位是复帧定位码组本身,编码为“0000”,第六位用于复帧失步告警指示,失步为“l”;同步为“0”,其余3比特为备用比特,如不用则为“l”。需要说明的是标志信号码a、b、c、d不能为全“0”,否则就会和复帧定位码组混淆了。

6.3.4 PCM的高次群

目前我国和欧洲等国采用PCM系统,以2048kb/s传输30/32路话音、同步和状态信息作为一次群。为了能使如电视等宽带信号通过PCM系统传输,就要求有较高的码率。而上述的PCM基群(或称一次群)显然不能满足要求,因此,出现了PCM高次群系统。

在时分多路复用系统中,是由若干个低次群通过数字复用设备汇总而成的。对于PCM 30/32路系统来说,其基群的速率为2048kb/s。其二次群则由4个基群汇总而成,速率为8448kb/s,话路数为4×30=120话路。对于速率更高、路数更多的三次群以上的系统,目前在国际上尚无统一的建议标准。作为一个例子,图6-31介绍了欧洲地区采用的各个高次群的速率和话路数。我国邮电部也对PCM高次群作了规定,基本上和图6-31相似,区别只是我国只规定了一次群至四次群,没有规定五次群。

PCM系统所使用的传输介质和传输速率有关。基群PCM的传输介质一般采用

市话对称电缆,也可以在市郊长途电缆上传输。基群PCM可以传输电话、数据或1MHz可视电话信号等。

二次群速率较高,需采用对称平衡电缆,低电容电缆或微型同轴电缆。二次群PCM可传送可视电话、会议电话或电视信号等。

三次群以上的传输需要采用同轴电缆或毫米波波导等,它可传送彩色电视信号。

图6-31 PCM的高次群

目前传输媒介向毫米波发展,其频率可高达30~300GHz。例如地下波导线路传输,速率可达几十吉比特/秒(Gb/s),可开通30万路PCM话路。采用光缆、卫星通信则可以得到更大的话路数量。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接