欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 摘抄 > 从一到无穷大数学摘抄汇编80条

从一到无穷大数学摘抄汇编80条

时间:2019-02-05 09:09

部分等于整体:

如果问一个问题:所有整数的数量和所有偶数的数量,哪个多哪个少?相信很多人会觉得肯定是所有的整数多呀,因为整数是12345678这样排列的,而偶数是2468这样排列的。但是如果你把一和二对应,二和四对应三和六对应四和八对应的话,这样一直排列下去,你会发现,不管你排练到多少,总会有一个偶数和这个整数是可以对应的。

星际旅行:

如果速度达到光速,时间将会静止,如果速度超过光速,时间将会倒流。假设你决定去参观天狼星的一颗卫星,而它距离太阳系9光年,你搭乘上一艘以光速行驶的飞船。这时候,你很自然地会认为从天狼星到回天狼星的往返一程至少要18年,因此你一定会筹划着携带上大量的食物以做供应。但如果你乘坐的飞船运行速度接近光速,那么你的所有担心都将是没有必要的,而所有的防患措施也完全是多余的。事实上,如果你的速度能达到光速的99.99999999%,那么,你的手表、你的心脏、你的肺、你的消化和思考过程都将会减慢70000倍。如此一来,地球到天狼星往返一趟所需的18年(这是从地球人的角度看到的时间)对你而言,不过是区区几个小时而已。而事实上,若是你一吃完早饭就从地球出发,那么,当你的飞船降落在天狼星的一个行星上时,正好是你想吃午饭的时间。或者,如果你行程匆忙,吃完午饭后马上就得回家,你也很可能会赶到晚饭时回到家。但在当你回到家时你定会大吃一惊,因为你会发现地球上已经过去了18年。且因为你是以接近光速的速度在运动,故而地球上的18年对你来说,也不过才一天的光阴而已。

隐性遗传和显性遗传:

两条染色体当中只需一条上面的信息就可以显现具体表征的叫做显性遗传。而必须两条染色体同时具备同样的信息,才可以在外观显现的叫做隐性遗传,所谓的隔代遗传,就是虽然父体和母体没有相关的`表征,但是不代表他们的某一条染色体上面没有相关的信息,如果它们身上携带有相应的基因,那么他们的孩子身上就有可能出现在父体和母体身上没有出现过的表征。

人造病毒

所有的生命体的基本单位是细胞。而有生命的细胞和没有生命的一团物质,它们的区别是是否有基因。而基因的本质是一团以固定结构存在的原子,可以分为两部分,一部分是蛋白质分子,一部分是核糖核酸。病毒就是自由基因,现在生物化学家已经掌握了用普通的化学元素合成生物蛋白和核糖核酸的方法,虽然暂时只能合成最基本的一种病毒,但是假以时日,未必就不能用简单的化学元素来合成所有的基因。

拓宽视野:

古人他认为地球是世界的中心,后来放大格局,认识到太阳才是中心。对于现在的大多数人来讲,可能内心的潜意识认为太阳就是中心。但事实上,从天文学观测到的结果来讲,整个太阳系都是在银河系当中特别特别边缘的一个小地方。以前听到一个学者说,如果以后的孩子选择专业的话,不考虑生存的前提下,他会建议孩子要么选择天文学,要么选择历史。因为历史可以从时间的维度来极大的放大格局,而天文学可以在空间的维度放大格局。

自然科学揭示世界的本来面目,在价值观当中,这应该成为非常重要也非常珍贵的组成部分,价值观越贴近世界的真相,对行为的指导意义就越大,所以自然科学不可不了解。

数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。下文是一些高中数学知识的手抄报内容,欢迎大家阅读与了解。

高一数学知识点总结:指数函数

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

高一数学知识点总结:立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的`端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

数学的手抄报

数学的手抄报

数学的手抄报

数学的手抄报

数学的手抄报

数学的手抄报资料1

新课程改革理念认为,知识不能由教师或其他人传授给学生,而只能由每个学生依据自身已有的知识和经验主动地加以建构;同时,让学生有更多的机会去论及自己的思想,与同学进行充分的交流,学会如何去聆听别人的意见并作出适当的评价,有利于促进学生的自我意识和自我反省。从而,数学课堂教学中教师的作用就不应被看成“知识的授予者”,而应成为学生学习活动的促进者、启发者、质疑者和示范者,充分发挥“导向”作用,真正体现“学生就是主体,教师就是主导”的作用。

全面推进课程教学改革,使学生成为积极的探索者、思考者,必须重视学生“学”的过程,抓好学生数学学习中的“读、听、讲、写、用”。

一、数学学习中的“读”

现代社会已进入信息化时代,要求人们不仅要“学会”,更要“会学”。“会学”的基础应当就是会“读”,包括:

1.读教材

教材就是学生学习数学的主要材料,它就是数学课程教材编制专家在充分考虑学生生理心理特征、认知结构、学科特点等众多因素的基础上精心编写而成的,具有极高的阅读价值。读教材包括课前、课堂、课后三个环节。课前读教材属于了解教材内容,发现疑难问题;课堂读教材则能更深刻地理解教材内容,掌握有关知识点;课后读教材就是对前面两个环节的深化和拓展,达到对教材内容的全面、系统的理解和掌握。

2.读书刊

除读教材外,学生应广泛阅读课外读物,如上海教育出版社出版的“初、高中学生数学课外阅读系列”丛书、《中学生数学》杂志等。即如读报也不仅能使学生关心国内外大事,也能使学生关注我们日常生活中的数学,捕捉身边的数学信息,体会数学的价值,了解数学研究的动态。然而,与各种各样的复习资料、习题集相比,渗透现代科技的高质量的数学课外读物实在太少了。数学学习中的“读”,不同于读小说书,常需纸、笔演算推理来“架桥铺路”,还需大脑建起灵活的语言转化机制。

二、数学学习中的“听”

数学学习中的“听”,主要指听课,它就是学生获取知识的重要环节,也就是学生系统学习知识的基本方法。听课不仅指听老师上课,而且包括听同学的发言。

1.听老师上课

听老师上课主要就是听老师上课的思路,即发现问题、明确问题、提出假设、检验假设的思维过程。既要听老师讲解、分析、发挥时的每一句话,更要抓住重点,听好关键性的步骤,概括性的叙述。特别就是自己读教材时发现或产生的疑难问题。

2.听同学发言倾听和接受他人的数学思想和方法,不仅就是听老师的,也包括听同学的发言。同学间的思想交流更能引起共鸣。从中可以了解其他同学学习数学和思考问题的方法,加之老师适时的点拨和评价,有利于自己开阔思路、激发思考、澄清思维、引起反思。学会倾听老师和同学的意见,反思自己的想法,有助于发展学生良好的个性,培养团结协作的精神,增强群体凝聚力。三、数学学习中的“讲”培养良好的语言文字表达能力,不仅就是语文学习的任务,也就是提高数学素养的重要内容,就是数学学习的任务之一。数学学习中的“讲”就是培养学生语言文字表达能力的重要形式,包括讲体会、讲思路等。

1.讲体会学生通过读教材、读书刊,听上课、听发言后,再让学生讲“读”、“听”的体会,可以加深“读、听”内容的理解和掌握。如讲教材内容,特别就是教材中“读一读”内容的体会,讲报刊杂志中的数学,讲课外读物上的内容概要,讲对老师上课、同学发言的看法,甚至讲自己存在的疑问等。

2.讲思路学习数学离不开解题,但不能为解题而解题,应在解题过程中重视解题思路的讲解,哪怕就是错误的思路从中也能吸取经验教训,深刻理解数学概念和原理。以学生的作业作为了解学生学习状况的唯一通道往往掩盖了学生思维的完整过程,就是不全面的。通过学生大胆地讲,才能全面反应学生的思想,暴露学生思维的过程,以利于教师掌握准确的反馈信息,及时调整教学计划。

四、数学学习中的“写”

数学学习中的“写”就是培养学生书面表达能力的重要形式。通过上述“读、听、讲”,应进一步要求“写”,它就是对“读”、“听”的检验,对“讲”的深化。除通常要完成的`书面作业外,还应包括写读后感、写小论文等。

1.写读后感通过阅读教材,尤其就是教材中的“读一读”内容,以及报刊杂志、课外读物的有关内容,把自己的感想或者内容概要写下来,不求面面俱到,只求日积月累,培养兴趣,提高文字表达能力。

2.写小论文写小论文比写读后感的要求更高些,但不就是不可做到。这需要学生广泛阅读,积累资料,深入探究,还要提高分析问题、提出问题和解决问题的能力,培养敏锐的观察力,增强创新意识,提高创新能力。五、数学学习中的“用”

数学就是现实世界的抽象反映和人类经验的总结,就是构成现代文化的重要组成部分,数学知识的学习必须与数学应用有机地结合起来,正如“学以致用”就是我们一直所倡导的。但强调应用,不就是再回到“测量、制图、会计”等那种忽视基础理论的邪路上去,而就是要培养学生用数学的意识,学会用数学的理论、思想和方法分析解决其他学科问题和生活、生产实际问题。真正体现数学的应用价值。

数学学习中的“读、听、讲、写、用”一个有机的整体,其中每一个环节都离不开教师的积极引导、点拨,更需要学生积极主动的学习精神。只有师生之间的积极配合,才能取得教与学的最佳效果。

数学的手抄报资料2

数学就是一门学科。在我们生活中,时时刻刻都看得到、用得上,只要你一细心,就会发现它的神奇和魅力。

许多如数、函数、集合等数学对象都有着内含的结构。这些对象的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。

空间

空间的研究源自于欧式几何。三角学则结合了空间及数,且包含有非常著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。

基础

为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的就是给数学各分支提供一个坚实的基础,而它本身的内容也就是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。

集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接