欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 评语 > 倍数与分数听课评语聚集70条

倍数与分数听课评语聚集70条

时间:2020-05-15 20:08

数学《分数基本性质》评课稿1

1、教材简析

《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

2、教材处理

(1)坚持以本为本的原则,把教材中的陈述性教学为猜想与验证性发现。

(2)把总结式教学为学生自我发现、自我总结的探究性学习。

(3)以教师的主导地位转化为学生为主体的学生探究性学习。

3、教学过程

这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

在新授过程中,沈老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。

在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。沈老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

数学《分数基本性质》评课稿2

今天上午有幸听了冯老师的讲课,讲了一节五年级数学下册关于“分数的基本性质”的课程。

从听课中可以总结出一下几点:

1、从整体看本课程,有一个非常明确的主线,巧妙引入——呈现问题——假设猜想——推理论证——总结结果——解决问题,这样将一节课串起了,做到了严谨落实,具有启发性和方向导向性,给学生以明确的学习指导和方法拓展,也为以后自主学习做好了铺垫。

2、新旧知识的`衔接处理巧妙,从开始计算因此除法和分数的关系,再复习除法中商不变的规律,根据两者的联系,让学生非常巧妙的猜测分数的基本性质,同时也让学生能够很快的记住。

3、问题引导有趣,细节处理到位,从开始的悟空分西瓜引出问题,有力的吸引了学生的眼球和培养了收集信息的能力。接着从一个除法算式中得出商不变的规律,着重强调了0除外的原因,在由商不变规律猜想出来的分数基本性质中,也引出了0除外,同样给学生明确的解释,加深学生的印象和对细节的关注,养成良好的学习习惯。

4、方法多样化,为什么分数的大小不变呢?从不同的角度分析和证实,包括计算和动手操作,在小组合作中感受分数大小不变的原因,并且对为什么用纸张表示出的几个分数相等,做到了准确的讲解。

5、问题引出课题,又用课堂知识做了解决,最后证实了分西瓜的结论。而且在练习设计中做到了层层推进,由易到难,变化多样性,从乘法延伸到加法。

对本节课意见和建议:

1、在用正方形纸张折叠出三个分数时,教师已经在上呈现出了图形,学生会受到上的图折叠,思维受到了限制,可能不会再去想其他的方法。

2、课堂的结尾由于时间的紧的缘故,教师对于后面两个较难的题做出答案后,没有及时给出方法总结,可以说一说这种题型的做题方法,让学生能够较快的练习。

《分数的基本性质》数学评课稿1

今天上午有幸听了冯老师的讲课,讲了一节五年级数学下册关于“分数的基本性质”的课程。

从听课中可以总结出一下几点:

1、从整体看本课程,有一个非常明确的主线,巧妙引入——呈现问题——假设猜想——推理论证——总结结果——解决问题,这样将一节课串起了,做到了严谨落实,具有启发性和方向导向性,给学生以明确的学习指导和方法拓展,也为以后自主学习做好了铺垫。

2、新旧知识的衔接处理巧妙,从开始计算因此除法和分数的关系,再复习除法中商不变的规律,根据两者的联系,让学生非常巧妙的猜测分数的基本性质,同时也让学生能够很快的记住。

3、问题引导有趣,细节处理到位,从开始的悟空分西瓜引出问题,有力的吸引了学生的眼球和培养了收集信息的能力。接着从一个除法算式中得出商不变的规律,着重强调了0除外的原因,在由商不变规律猜想出来的分数基本性质中,也引出了0除外,同样给学生明确的解释,加深学生的印象和对细节的关注,养成良好的学习习惯。

4、方法多样化,为什么分数的大小不变呢?从不同的角度分析和证实,包括计算和动手操作,在小组合作中感受分数大小不变的原因,并且对为什么用纸张表示出的几个分数相等,做到了准确的讲解。

5、问题引出课题,又用课堂知识做了解决,最后证实了分西瓜的结论。而且在练习设计中做到了层层推进,由易到难,变化多样性,从乘法延伸到加法。

对本节课意见和建议:

1、在用正方形纸张折叠出三个分数时,教师已经在上呈现出了图形,学生会受到上的图折叠,思维受到了限制,可能不会再去想其他的方法。

2、课堂的结尾由于时间的紧的缘故,教师对于后面两个较难的题做出答案后,没有及时给出方法总结,可以说一说这种题型的做题方法,让学生能够较快的练习。

《分数的基本性质》数学评课稿2

分数的基本性质是约分和通分的基础。而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。本节课与传统的概念教学相比,有很大的改进,体现了新的教学理念,主要表现在以下几个方面:

一、构建新的课堂教学模式。

传统的教学往往只重视对结论的记忆和模仿,而这节课老师把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。在课堂上,老师给学生提供了一组组材料,让学生去观察、感悟,并且进行大胆猜想,进而又进行了验证。当学生验证出分数的'分子、分母都乘或除以同一个数,分数的大小不变之后,教师并没有立即让学生去归纳,而是让学生用自己感知的这一规律去写一组相等的分数,这样可加深对分数的基本性质的理解,为后面归纳分数的基本性质奠定了基础。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。

二、培养学生勇于猜想,大胆创新的精神。

牛顿曾说:“没有大胆的猜想,就做不出伟大的发现。”因此,我们在日常教学中,应鼓励学生进行大胆猜想,从而发展数学思维。本节课,当老师引导学生观察几组分数的分子、分母变化情况后,先后鼓励学生猜测:分子、分母都乘同一个数,分数的大小不变;分子、分母都除以同一个数,分数的大小不变,以引起学生探究的兴趣。

三、为学生提供了大量数学活动的机会,让学生真正成为学习的主人。

《数学课程标准》指出:“学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。”这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。在本节课中,教师先引导学生观察几组分数的分子、分母发生了怎样的变化?分数的大小有没有变化?然后在猜测与动手操作验证中,逐步感知分数的分子、分母都乘或除以同一个数,分数的大小不变。最后在概括与运用中对分数的基本性质形成了清晰的认识。每一个活动都调动学生学习的积极性,使学生主动参与到活动中,从而体现了学生的主体地位。

《分数的基本性质》数学评课稿3

宋贺彩科长和王丽老师的《分数的基本性质》两节课各有特色,下面就这两节课谈谈自己的体会。 宋科长的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。 这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组填空题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”再根据分数与除法德关系,引导学生把除法算式改写成分数的形式,从而概括出分数的基本性质。 练习题的设计也是由浅入深,尤其是分数大小的比较中,“分子分母都不相同的怎样比较大小”时,让学生自己讨论寻求解决的办法,体现了自主学习。王丽老师的《分数的基本性质》一节课,充分体现了新的课程标准与新理念,给我的感受也很深刻。 首先这节课的引入设计得很好,从学生的兴趣出发,通过孙悟空给猴子们分甘蔗,大猴子分得每根甘蔗的1/2,小猴子分得每根甘蔗的2/4,劳猴子分得每根甘蔗的3/6,小猴子说分得不公平,由此组织学生展开讨论,这样一下子就吸引了学生的注意力,激发了学生学习积极性和兴趣。 学生自己通过合作学习探讨得出:

1/2=2/4=3/6之后又引导学生去发现这些分数之间的变化规律,从而得出分数的基本性质,并强调了“同时”、“相同的数”、“0除外”等关键处。 练习题的设计也是形式多样,尤其是“小游戏”,老师说分母,学生说分子或老师说分子,学生说分母;“连续写出多个相等的分数”等都是从学生的兴趣出发,调动了学生的多向思维,效果也不错。

听了李老师的一节“分数的基本性质”的数学课,给我留下了深刻的印象。

整节课教者设计了四个教学环节,猜想与验证,归纳再验证,巩固与应用,拓展与延伸。如从课的开始,就让学生“猴妈妈分饼”的故事中进行猜测,其实这三个分数的大小相等。让学生运用自己原有的知识经验进行验证,得出规律后并没有满足,而是继续利用“性质”的应用再次检验结果的正确性。通过学生不断猜想,不断验证,再猜想,验证,学生的兴趣比较高,他们希望能向别人证明自己的猜想,这猜想一旦被别人认可,学生的自信心就会大增。教者大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的

是数学学习的方法,从而激励学生进一步地主动学习,我认为这是本节课一大亮点。

但是,我感觉本课教学中,验证得还不够透彻,部分同学还有疑虑。如果能让每位学生在自己准备的纸上画一画、折一折、或剪一剪,通过动手操作来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。

沈老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。尽管是一堂旧教材的课,但在沈老师设计的课堂中,却让人欣喜的发现新的课程标准中的新理念,为旧教材与新理念的有机结合作了一个很好的典范作用。下面就这节课谈谈自己的体会。

1.教材简析《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,

分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

2、教材处理

(1)坚持以本为本的原则,把教材中的陈述性教学为猜想与验证性发现。

(2)把总结式教学为学生自我发现、自我总结的探究性学习。

(3)以教师的主导地位转化为学生为主体的学生探究性学习。

3、教学过程这节课充分运用知识的迁移,调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

在新授过程中,沈老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”

贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。 在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。沈老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

今天听了花老师《分数的性质》,不落俗套,与学生真诚对话,和谐互动,听后令人回味无穷。花老师教师教态自然、语言清晰、数学语言表述准确。她通过引导观察→寻找规律,发现规律,我觉得这是一堂充满生命活力的课堂,从中我得到了一些鲜活的经验和有益的启示。具体概括以下几点:

一、创设情境,激发兴趣。

在本堂课中,教师通过创设老和尚分饼的教学情景,一下子吸引了学生的注意力,使学生急于想知道三个和尚分得的饼是否一样多,促使学生动脑想,达到了激发学生积极参与学习活动的目的。让学生感知

分子不同,分母不同而大小却相同这一现象从而学生在思想上真正作好了探究新知的准备。

二、自主、合作探究。

在教学中最大限度地启发学生积极参与教学活动的过程,注重问题的探索性,留给学生充分的思维空间,让他们自己去发现、去探索知识。教师就这样把抽象的数学知识贯穿于故事情节中,使学生随着情节的推进一步步探究知识的生成过程,学得趣味盎然,意犹未尽。《新课程标准》中指出:学生是学习的主人,教师是学习的组织者、引导者。这样的课堂是和谐的、具有生命力的课堂。

三、及时练习,发展能力。

在练习设计方面,教师尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,同时也应注重练习的层次性、趣味性与开放性。喜欢游戏是儿童的天性。“兴趣”对学习效果起决定性作用,竞赛活动更能充分调动起孩子们的每一个神经细胞。

在课堂中设计了在一分钟之内写与相等的分数竞赛,强烈地刺激学生想一决高下的心理,从而更有效

地掌握了知识。学生在形式多样的练习中发展了能力。

创设一种和谐愉悦的气氛,让学生能够从中感受到学习的乐趣,并主动探求知识,发展思维。能为学生提供充分自主探求的空间,把探索、发现知识的权利还给学生,让学生亲身体验数学知识的形成过程,因此,教师在教学“分数的基本性质”时力图让学生在开放、愉悦、和谐的氛围中参与学习。

篇一:比的基本性质评课稿

张老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。尽管是一堂旧教材的课,但在沈老师设计的课堂中,却让人欣喜的发现新的课程标准中的新理念,为旧教材与新理念的有机结合作了一个很好的典范作用。下面就这节课谈谈自己的体会。

1.教材简析

《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

2、教材处理

(1)坚持以本为本的原则,把教材中的陈述性教学为猜想与验证性发现。

(2)把总结式教学为学生自我发现、自我总结的探究性学习。

(3)以教师的主导地位转化为学生为主体的学生探究性学习。

3、教学过程这节课充分运用知识的迁移

调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”

在新授过程中,沈老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。

在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。沈老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。

篇二:比的基本性质评课稿

1,充分体现了学生的主体性,放手到位.

在探究比的基本性质时,教师先让学生在已有的知识基础上大胆猜想,然后让学生以同桌为单位进行验证,展示验证过程,再让学生归纳出比的基本性质;在探究化简比的方法时,教师安排了两次活动,第一次,安排学生独立自主探究,解决例1第一部分,第二次,由于内容有一定难度,教师让学生以小组(4人)为单位,先自己思考,再小组内交流方法并解决问题,最后全班展示交流,总结方法,解决了例1第二部分.在本节课的两次新知学习中,教师没有过多讲解,方法的探究,结论的归纳都是出自学生之口,学生真正经历了知识的产生过程.

2,深挖教材并合理进行调整.

在探究化简比的方法时,教材例1中只安排了整数比整数,分数比分数,小数比整数三种类型,基于对教材知识体系和学生实际的了解,教师把"做一做中的小数比小数,小数比分数两种类型的题充实到例1中,这样使学生较全面的掌握了化简比的方法,降低了练习难度,效果较好.

3,整堂课体现了大容量快节奏,练习设计形式多样.

本课教学设计紧凑,环环相扣,容量大,节奏快,充分利用了课上的每一分钟无论在学生验证猜想时,还是探究化简比的方法时,教师都要求全员参与.练

习设计层次性强,有梯度,题型灵活多样,尤其是快乐AB卷中设计了两种难度的练习,供不同层次的学生选择,关注了全体.

4,注重了多元化的评价.

教师在教学过程中,不仅注重了对学生个体的评价还注重了对小组合作学习的评价,同时也注重了培养学生的评价意识.在谈收获时,学生也能够正确地对组内成员进行评价,合作意识得以凸显;尤其在快乐AB卷中,教师设计了学生自评,组内成员互评,对教师课堂教学的评价版块,这种多元化评价的设计既有利于学生的发展又有利于教师课堂教学的改善.

值得商榷之处:

1,个别环节没有抓住,失去了生成时机.

例如:在学生总结比的基本性质时,个别学生说出了"0除外",这时教师就应该抓住这一问题,为什么"0除外",进行强化,砸实这个知识点.

2,学生学习热情不够高.

教师在今后教学中应在创设情境和设计过渡语方面下功夫,力求充分调动学生的学习热情.

篇三:《比的基本性质》评课稿

《比的基本性质》这节课是六年级上册第三单元的知识,李老师按照复习旧知(除法和分数),猜测比的性质,然后让学生验证,最后应用这个比的基本性质去化简,解决生活中的问题,整个教学过程清楚有条理,各个环节相扣。

李老师上这节课准备很认真,整堂课中充分运用了转化、迁移、归纳的数学思想。对分数的基本性质、除法的商不变规律进行复习,从而迁移到比的基本性质,很好地运用了这三者的联系。在推导比的基本性质中,还运用了猜测、归纳、验证,体现了数学的严谨。 在教学过程中李老师采用启发点拨,唤起回忆,让学生自己去获取新知。并适时激发思维,提高学生灵活运用知识的能力。在学生掌握分数和小数比的化简方法后,老师又提出新问题:把:0.125化成最简单的整数比都有哪几种化简方法?这一问,激起学生的兴趣,大家积极动脑想不同的化简方法。这种教学方式极大限度地调动学生积极思维,培养了学生独立思考、灵活运用已有知识的能力,提高了学生分析问题和解决实际问题的能力。

篇四:《比的基本性质》说课稿

一、说教材

1、教材所处的地位和作用:

《比的基本性质》是小学数学新人教版六年级上册第四单元第二课时。它是在学生学习商不变性质、分数的基本性质、比的意义、比和除法的关系、比和分数的关系的基础上组织教学的。比的基本性质是一节概念课的教学,它跟分数的基本性质、商不变性质实际上是同一道理的。所以本节课主要是处理新旧知识间的联系,在巩固旧知识的基础上进入到学习新知识。教材内容渗透着事物之间是普遍联系和互相转化的辩证唯物主义观点。学生理解并掌握比的基本性质,不但能加深对商不变性质、分数的基本性质、比的意义、比和分数、比和除法等知识的理解与掌握,而且也为以后学习比的应用,比例知识,正、反比例打好基础。

2、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定以下教学目标:

(1)、使学生联系商不变和分数的基本性质,进行知识类比迁移,理解比的基本性质。

(2)、使学生在理解比的基础性质上,尝试化简比,并掌握化简的方法

(3)、培养学生利用旧知自主探索新知识和能力

(4)、在化简比的过程中体会、掌握转化的思想过程

3、教学重点、难点

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

重点:理解比的基本性质。通过同学们自主探究,突出重点。 难点:运用比的基本性质化简比。通过师生交流互动突破难点。

二、说学情

六年级学生已掌握除法的基本性质、分数的基本性质、比的意义、 比和除法的关系、比和分数的关系等知识,这都是学习比的基本性质的基础,而且六年级学生已具有类比和知识迁移能力,所以要根据除法的基本性质和分数的基本性质猜想比的基本性质并不难,关键是在于应用,即化简比,对学生来说,如何将分数比和小数比转化成整数比可能是个难点。

三、说教法、学法

1、复习铺垫,使学生领悟利用旧知学习新知的学习方法,沟通知识间的联系。

2、猜想激趣,通过猜想激发学生的兴趣。

3、引导学生通过观察、对比、类推总结出比的基本性质,并通过尝试、讨论等方法进行化简比,既发挥教师的主导作用,又体现学生的自主学习。

四、教学程序

基于以上分析,我把教学程序分(五)大环节进行:

(一)、创设情景,导入新课

1、师:什么是比?两个数的比还可以写成什么形式?(除法和分数)

2、判断

6÷8=60÷80 ( )

6÷8=3÷4 ( )

6÷8=3÷8 ( )

意图:回顾商不变性质

12/18=2/3 ( )

12/18=60/90 ( )

12/18=12/180 ( )

意图:回顾分数基本性质

(二)、探索交流,解决问题

1.猜想

在除法中,有商不变性质,在分数中,有分数的基本性质,上节课我们学习了比、除法和分数之间有密切的关系,请大家根据商不变性质和分数的基本性质猜一猜在比中是不是也有这样的规律?

生:有

师:到底有怎样的规律呢?四人一组讨论并汇报(教师指导学生根据商不变性质和分数的基本性质以及比、除法和分数之间的关系进行猜想)

猜想:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

师:到底我们的猜想对不对呢?接下来我们来验证。

2.验证

(1)先利用比和除法的关系来研究

如3/4=6÷8=(6×2)÷(8×2)=12÷18=3/4

3/4=6:8=(6×2) :(8×2)=12:18=3/4

3/4=6:8=(6÷2) :(8÷2)=3:4=3/4

3/4=6÷8=(6÷2)÷(8÷2)=3÷4=3/4

根据比与除法的关系,通过类比推理,得出了比的性质

(2)让学生自己根据比和分数的关系研究比中的规律吗?

2/3=12/18=(18×2)/(18×2)=2/3

2:3=12:18=(18×2):(18×2)=2:3

2:3=12:18=(18÷2):(18÷2)=2:3

2/3=12/18=(18÷2)/(18÷2)=2/3

根据比和分数的关系,通过类比推理,得出了比的性质

(3)课中小结

小结:比的前项和后项同时乘或除以相同的数(0除外),比值不变。我们通过多种方法发现了这样的规律,这个规律叫做比的基本性质。(揭示主题)运用性质,掌握化简比的方法

3、解决问题

(1)、解决例1第(1)题。

使学生明确要解决的问题是:求两面联合国旗的长和宽的最简单的整数比。(比的前项和后项只有公因数1的比叫做最简单的整数比,它他还是一个比。)

第一面联合国旗的长与宽的比是:15:10

讨论:怎样才能化作最简单的整数比?

为什么可以同时除以5?根据是什么?

学生分别回答,在逐渐推进问题,以便明确解决问题的方法和根据。

板书:15:10=(15÷5):(10÷5)=3:2

第二面联合国其的长与宽的比是:180:120

个人思考完成:如何化简180:120?边思考边填写在科教书相应的位置。

板书:180:120=(180÷60):(120÷60)=3:2

完成“做一做”前两题。(指名板演并订正,并抽问根据及方法。) 如果分数的前项和后项都不是整数或其中一项不是整数应该怎么样化简呢?

(还可能会出现:15:10=15/10=3/2=3:2等,用求比值的方法化简比,给予表扬。)

(2)、解决例1第(2)题

化简1/6:2/9

同桌讨论:当比的前、后项出现了分数时,应该怎样来化简比呢?为什么?

1/6:2/9=(1/6×18):(2/9×18)=3:2

追问:为什么乘18?

完成“做一做”第4.5小题。

化简0.75:2.

师:如果比的前、后项出了小数怎么办?

0.75:2=(0.75×100):(2×100)=75::200=3:8

篇五:比的基本性质教学设计说课稿课后反思

教学内容:

人教版小学六年级数学上册《比的基本性质》。 教学目标:

知识与技能:根据除法中商不变的性质和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。 过程与方法:通过学生的.自主探讨,掌握化简比的方法并会化简比。

情感态度价值观:初步渗透事物是普遍联系的辩证唯物主义观点。

教学重点难点:

教学重点:运用比的基本性质进行化简比。

教学难点:求比值和化简比的区别和联系。

教法学法:教学中我以让学生探究发现比的基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。对于比的基本性质,不仅要求学生理解其内容,更重要的是会应用,即化简比。这一过程的教学则采用自学成才与讨论相结合的方法,实现教法、学法和解决问题方法多样化。

教学过程:

(一)创设情境 激疑添趣

1、谈话——导入

我们已经学习了比的意义,知道比和分数、除法之间有着密切的联系,哪位同学愿意说说比和分数、除法之间有什么联系?

如果学生有困难,可以先完成下表。填表后再说一说比与除法、分数有怎样的关系。

2、复习——铺垫

①4?5?8?15?2???

问:根据什么填的?什么是商不变的性质?

② 3????4169

问:根据什么填的?什么是分数的基本性质?

(设计意图:从复习商不变的性质及分数的基本性质入手,为学生类推出比的基本性质打下基础,渗透转化的数学思想,使学生感受事物间存在着紧密的内在联系。这样学生的思维自然随着问题的迁移,将新旧知识连成一片。让学生带着问题走进课堂,自己动手得到答案走出课堂。)

(二)合作交流 探求新知

1、大胆猜想:我们学过除法中商不变的性质和分数的基本性质,然而比与分数、除法之间有着极其密切的联系,那我们根据它们之间的联系,你有什么联想和猜测呢?

(设计意图:在这里直接让学生利用已有的知识经验进行猜测,使学生利用已有的知识经验进行猜测和在猜测中不断质疑的能力得到锻炼。)

2、全班验证:表扬敢于猜想的同学,不过,猜想毕竟是猜想,它还是有待证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)

①根据分数、比、除法的关系验证。

②根据比值验证。

3、明确:通过验证,刚才大家猜测的规律成立,叫做比的基本性质(板书课题)。

4、再次完善比的基本性质,强调0除外,并让学生讨论出产除外的原因。

(设计意图:此教学环节中,应顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,在猜测的基础上进行验证,这一环节教师充分交给学生,让学生自己不断验证,真正体现了学生是课堂的主人这一理念,并使之在“大胆猜想——小心验证——得出结论”的这一过

程中,最后确切地得出了“比的基本性质”。)

(三)应用迁移 巩固提高

在新概念介绍结束以后,对概念进行应用迁移,以达到巩固提高。例题讲解是数学课中一个很重要的环节,一节课的例题就是对新概念的完美补充。

教学运用比的基本性质化简比

1、提问:在我们以前学习过程中,商不变的性质有什么用处?分数的基本性质又有什么用处?

2、鼓励学生大胆猜想。

(1)分小组先讨论你们是怎么猜想的,意见一致后,请一个同学把文字叙述记录下来,其余同学想办法举例说明这一猜测是正确的。

(此时老师巡视,主要指导学生如何举例证明自己的猜想。)

(2)学生肯定能联想到分数的基本性质可以化简分数,从而猜想到运用比的基本性质是不是可以化简比?

(3)教师肯定学生的猜想。

(4)问:我们化简分数是要把分数化成什么样的分数?(最简分数,分子与分母互质)那么我们要把比化成什么样的比呢?

(5)让学生猜想——分组讨论——学生代表发言。

(6)教师再次肯定学生的猜想。

(7)板书:最简整数比。

(8)鼓励学生根据自己的理解说一说什么是最简整数比。(比的前项和后项互为质数)

3、运用知识,解决问题

(1)在下列比中找出最简整数比。

14:21 0.3:0.4 30:10 2:7

24:5 1.25:2 3:7 2:1 8453

(2)学生尝试——将余下的比化简成最简整数比 提问:根据比的基本性质你能将余下的比化简成最简整数比吗?(先讨论后试做)

(3)合作交流

(设计意图:因为有最简分数做基础,所以完全可以放手让学生自己去理解,什么是“化简比”?什么是“最简比”?教师为学生设计一个“开放型”的思考空间,为学生提供“问题解决的机会”。同时,学生通过自己对“化简比”的深刻理解,更有助于与“求比值”的区分。)

4、小结化简方法

①比的前项和后项都是整数时,同时除以它们的最大公约数,也可以把比写成分数的形式再化简;

②比的前项或后项是小数时,先转化成整数,然后再按照是比的前项和后项是整数的方法化简;

③比的前项和后项是分数时,?的前项和后项分别乘以分母的最小公倍数,将其转化成敔数?也可以用求比值的方

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接