
无聊了随便问问,那句名言:“随机数学随机过,量子力学量力学……”的全句是啥(后边好像在说微积分)
随机数学随机过 量子力学量力学 实变函数学十遍 汇编语言不会编
关于学物理的名言警句
1.判天地之美,析万物之理。
——庄子 2.物理定律不能单靠“思维”来获得,还应致力于观察和实验。
——普朗克3.交互作用是我们从现代自然科学的观点考察整个运动着的物质时首先遇到的东西。
自然科学证实了......交互作用是事物的真正的终极原因。
——恩格斯4.自然和自然的法则在黑夜中隐藏;上帝说,让牛顿去吧
于是一切都被照亮。
——蒲柏5.实验可以推翻理论,而理论永远无法推翻试验。
——丁肇中6.力学是关于运动的科学,它的任务是以完备而又简单的方式描述自然界中发生的运动。
——基尔霍夫7.(牛顿的)《原理》将成为一座永垂不朽的深邃智慧的纪念碑,它向我们展示了最伟大的宇宙定律,是高于(当时)人类一切其他思想产物之上的杰作,这个简单而普遍定律的发现,以它囊括对象之巨大和多样性,给于人类智慧以光荣。
——拉普拉斯8.物理学的任务是发现普遍的自然规律。
因为这样的规律的最简单的形式之一表现为某种物理量的不变性,所以对于守恒量的寻求不仅是合理的,而且也是极为重要的研究方向。
——劳厄9.科学是可以解答的艺术。
科学的前沿是介于可解与难解、已知与未知之间的全新疆域。
致力于这个领域的科学家们竭尽全力将可解的边界朝难解方向推进,尽其所能揭示未知领域。
——皮特.梅内瓦10.电学已经改变了我们的生活方式,并且产生了一个巨大的工程应用领域。
——埃米里奥.赛格瑞11.电和磁的实验中最明显的现象是,处于彼此距离相当远的物体之间的相互作用。
因此,把这些现象化为科学的第一步就是,确定物体之间作用力的大小和方向。
——麦克斯韦12.“法拉第先生,它(电磁感应)到底有什么用呢
”“啊,阁下,也许要不了多久你就可以对它收税了。
”——英国财政大臣格拉斯与法拉第的对话13.把高压电流在能量损失较小的情况下通过普通电线输送到迄今连想也不敢想的远距离,并在那一端加以利用......这一发现使工业几乎彻底摆脱地方条件规定的一切界限,并且使极遥远的水力的应用成为可能,如果在最初它只是对城市有利,那么到最后它终将成为消除城乡对立的最强有力的杠杆。
——恩格斯14.没有今天的基础科学,就没有明日的科技应用。
——李政道15.科学是一种方法,它教导人们:一些事物是如何被了解的,不了解的还有什么,对于了解的,现在了解到了什么程度......——费恩曼16.水波离开了它产生的地方,而那里的水并不离开,就像风在田野里掀起的麦浪。
我们看到,麦浪滚滚地向田野里奔去,但是麦子却仍停留在原来的地方。
——达芬奇17.固执于光的旧有理论的人们,最好是从它自身的原理出发,提出实验的说明。
并且,如果他的这种努力失败的话,他应该承认这些事实。
——托马斯.杨18.自从牛顿奠定了理论物理学的基础以来,物理学的公理基础的最伟大变革,是由法拉第、麦克斯韦在电磁现象方面的工作所引起的。
——爱因斯坦19.上下四方曰宇,古今往来曰宙。
——尸佼20.想象远比知识重要,知识有涯,而想象能环保整个世界。
——爱因斯坦21.科学的历史不仅是一连串的事实、规则和随之而来的数学描述,它也是一部概念的历史。
当我们进入另一个新的领域时,常常需要新的概念。
——普朗克22.科学考两条腿走路,一是理论,一是实验。
有时一条腿走在前面,有时另一条腿走在前面。
只有使用两条腿,才能前进。
——密立根23.万有引力、电的相互作用和磁的相互作用,可以在很远的地方明显的表现出来,因此用肉眼就可以观察到;但也许存在另一些相互作用力,他们的距离如此之小,以至无法观察。
——牛顿24.我们思想的发展在某种意义上常常来源于好奇心。
——爱因斯坦25.火药、指南针、印刷术——这是预告资产阶级社会到来的三大发明......指南针打开了世界市场并建立了殖民地......——马克思
爱因斯坦不同意量子力学的哪些观点
尼尔斯·亨利克·戴维·玻尔(丹麦文原名:Niels Henrik David Bohr,1885年10月7日—1962年11月18日,享年77岁),丹麦物理学家,哥本哈根大学的硕士和博士,丹麦皇家科学院院士,曾获丹麦皇家科学文学院金质奖章,英国曼彻斯特大学和剑桥大学名誉博士学位,1922年获得诺贝尔物理学奖。
玻尔通过引入量子化条件,提出了玻尔模型来解释氢原子光谱;提出互补原理和哥本哈根诠释来解释量子力学,他还是哥本哈根学派的创始人,对二十世纪物理学的发展有深远的影响。
1885年10月7日,玻尔生于哥本哈根,父亲克里斯丁·玻尔是哥本哈根大学的生理学教授,母亲出身于一个富有的犹太人家庭,从小受到良好的家庭教育,并爱好足球,曾经和弟弟哈那德·玻尔共同参加职业足球比赛。
1903年,18岁进入哥本哈根大学数学和自然科学系,主修物理学。
1907年,玻尔以有关水的表面张力的论文获得丹麦皇家科学文学院的金质奖章,并先后于1909年和1911年分别以关于金属电子论的论文获得哥本哈根大学的科学硕士和哲学博士学位。
随后去英国学习,先在剑桥J.J.汤姆孙主持的卡文迪许实验室,几个月后转赴曼彻斯特,参加了曼彻斯特大学以E.卢瑟福为首的科学集体,从此和卢瑟福建立了长期的密切关系。
1912年,玻尔考察了金属中的电子运动,并明确意识到经典理论在阐明微观现象方面的严重缺陷,赞赏普朗克和爱因斯坦在电磁理论方面引入的量子学说。
创造性地把普朗克的量子说和卢瑟福的原子核概念结合了起来。
1913年初,玻尔任曼彻斯特大学物理学教时,在朋友的建议下,开始研究原子结构,通过对光谱学资料的考察,写出了《论原子构造和分子构造》的长篇论著,提出了量子不连续性,成功地解释了氢原子和类氢原子的结构和性质。
提出了原子结构的玻尔模型。
按照这一模型电子环玻尔授课绕原子核作轨道运动,外层轨道比内层轨道可以容纳更多的电子;较外层轨道的电子数决定了元素的化学性质。
如果外层轨道的电子落入内层轨道,将释放出一个带固定能量的光子。
1916年任哥本哈根大学物理学教授。
1917年当选为丹麦皇家科学院院士。
1920年创建哥本哈根理论物理研究所并任所长,在此后的四十年他一直担任这一职务。
1921年,玻尔发表了《各元素的原子结构及其物理性质和化学性玻尔的纹章质》的长篇演讲,阐述了光谱和原子结构理论的新发展,诠释了元素周期表的形成,对周期表中从氢开始的各种元素的原子结构作了说明,同时对周期表上的第72号元素的性质作了预言;1922年,第72号元素铪的发现证明了玻尔的理论,玻尔由于对于原子结构理论的贡献获得诺贝尔物理学奖。
他所在的理论物理研究所也在二三十年代成为物理学研究的中心。
1923年,玻尔接受英国曼彻斯特大学和剑桥大学名誉博士学位。
1930年代中期,研究发现了许多中子诱发的核反应。
玻尔提出了原子核的液滴模型,很好地解释了重核的裂变。
玻尔认识到他的理论并不是一个完整的理论体系,还只是经典理论和量子理论的混合。
他的目标是建立一个能够描述微观尺度的量子过程的基本力学。
为此,玻尔提出了著名的“互补原理”,即宏观与微观理论,以及不同领域相似问题之间的对应关系。
互补原理指出经典理论是量子理论的极限近似,而且按照互补原理指出的方向,可以由旧理论推导出新理论。
这在后来量子力学的建立发展过程中得到了充分的验证。
玻尔的学生海森堡在互补原理的指导下,寻求与经典力学相对应的量子力学的各种具体对应关系和对应量,由此建立了矩阵力学。
互补理论在狄拉克、薛定谔发展波动力学和量子力学的过程中起到了指导作用。
签名。
在对于量子力学的解释上,玻尔等人提出了哥本哈根诠释,但遭到了坚持决定论的爱因斯坦及薛定谔等人的反对。
从此玻尔与爱因斯坦开始了玻尔-爱因斯坦论战,最有名的一次争论发生在第六次索尔维会议上,爱因斯坦提出了后来知名为爱因斯坦盒子的问题,以求驳倒不确定性原理。
玻尔当时无言以对,但冥思一晚之后发现巧妙的进行了反驳,使得爱因斯坦只得承认不确定性原理是自洽的。
这一争论一直持续至爱因斯坦去世。
1937年5、6月间,玻尔曾经到过中国访问和讲学。
期间,玻尔和束星北等中国学者有过深度学术交流,玻尔称束星北是爱因斯坦一样的大师。
束星北的文章《引力与电磁合论》《爱因斯坦引力理论的非静力场解》是相对论早期的重要论述。
1939年,玻尔任丹麦皇家科学院院长。
第二次世界大战开始,丹麦被德国法西斯占领。
1943年玻尔为躲避纳粹的迫害,逃往瑞典。
500丹麦克朗正面印有尼尔斯·玻尔的头像1944年,玻尔在美国参加了和原子弹有关的理论研究。
1945年,玻尔回到丹麦,此后致力于推动原子能的和平利用。
1947年,丹麦政府为了表彰玻尔的功绩,封他为“骑象勋爵”。
1952年,玻尔倡议建立欧洲原子核研究中心(CERN),并且自任主席。
1955年,玻尔参加创建北欧理论原子物理学研究所,担任管委会主任。
同年丹麦成立原子能委员会,玻尔被任命为主席。
1962年11月18日,玻尔因心脏病突发尼尔斯·玻尔在丹麦的卡尔斯堡寓所逝世,享年77岁。
去世前一天,他还在工作室的黑板上画了当年爱因斯坦那个光子盒的草图。
1965年玻尔去世三周年时,哥本哈根大学物理研究所被命名为尼尔斯·玻尔研究所。
1997年IUPAC正式通过将第107号元素命名为Bohrium,以纪念玻尔。
其子奥格·尼尔斯·玻尔也是物理学家,于1975年获得诺贝尔物理学奖。
相对论和量子力学一样吗
当然不一样了
这两者的适用领域是不同的。
就说通俗点牛顿的经典力学是描述宏观物体在低态下物理规律的理论,也就是我们通常可以看见的、较易理解的物理规律。
不适用于微观粒子(例如原子内部)、接近光速的运动。
而爱因斯坦的相对论是在牛顿经典力学的基础上更进一步,囊括了宏观物体在高速、低速状态下的各种运动规律。
即除了微观粒子,其他一切物理规律都遵循相对论。
量子力学则是最为神秘、最难以被世人理解的一种物理理论。
该理论只用于研究微观粒子的运动规律,与我们所熟知的世界格格不入
但却是事实存在的。
其代表人物是当今的霍金。
量子力学也是现代物理学发展的又一个方向。
不过别忘了,现在的一切物理理论都不是完全正确的
因为最终,不管是相对论、量子力学……所有的理论都应当归为一种理论,而这种理论将能解释一切物理规律。
我们也应当辩证的看待这些物理学的理论。
详解“薛定谔猫”和“测不准原理”
薛的猫名称薛定谔猫也称:薛定谔的猫英称:Schrödinger's cat薛定谔猫的概念 薛定谔猫是关于量论的一个理想实验。
实验内容:这个猫十分可怜,她(假设这是一只雌性的猫,以引起更多怜悯)被封在一个密室里,密室里有食物有毒药。
毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。
如果原子核衰变,则放出阿尔法粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,雌猫必死无疑。
这个残忍的装置由薛定谔所设计,所以雌猫便叫做薛定谔猫。
薛定谔猫提出 原文: 薛定谔在1935年发表了一篇论文,题为《量子力学的现状》,在论文的第5节,薛定谔描述了那个常被视为恶梦的猫实验:哥本哈根派说,没有测量之前,一个粒子的状态模糊不清,处于各种可能性的混合叠加.比如一个放射性原子,它何时衰变是完全概率性的。
只要没有观察,它便处于衰变\\\/不衰变的叠加状态中,只有确实地测量了,它才随机选择一种状态而出现。
那么让我们把这个原子放在一个不透明的箱子中让它保持这种叠加状态。
现在薛定谔想象了一种结构巧妙的精密装置,每当原子衰变而放出一个中子,它就激发一连串连锁反应,最终结果是打破箱子里的一个毒气瓶,而同时在箱子里的还有一只可怜的猫。
事情很明显:如果原子衰变了,那么毒气瓶就被打破,猫就被毒死。
要是原子没有衰变,那么猫就好好地活着。
自然的推论:当它们都被锁在箱子里时,因为我们没有观察,所以那个原子处在衰变\\\/不衰变的叠加状态。
因为原子的状态不确定,所以猫的状态也不确定,只有当我们打开箱子察看,事情才最终定论:要么猫四脚朝天躺在箱子里死掉了,要么它活蹦乱跳地“喵呜”直叫。
问题是,当我们没有打开箱子之前,这只猫处在什么状态
似乎唯一的可能就是,它和我们的原子一样处在叠加态,这只猫当时陷于一种死\\\/活的混合。
一只猫同时又是死的又是活的
它处在不死不活的叠加态
这未免和常识太过冲突,同时在生物学角度来讲也是奇谈怪论。
如果打开箱子出来一只活猫,那么要是它能说话,它会不会描述那种死\\\/活叠加的奇异感受
恐怕不太可能。
换言之,薛定谔猫概念的提出是为了解决爱因斯坦相对论所带来的祖母悖论,即平行宇宙之说。
薛定谔猫疑惑 尽管量子论的诞生已经过了一个世纪,其辉煌鼎盛与繁荣也过了半个世纪。
但是量子理论曾经引起的困惑至今仍困惑着人们。
正如玻尔的名言:“谁要是第一次听到量子理论时没有感到困惑,那他一定没听懂。
”薛定谔的猫是诸多量子困惑中有代表性的一个。
这个猫十分可怜,她(假设这是一只雌性的猫,以引起更多怜悯)被封在一个密室里,密室里有食物有毒药。
毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。
如果原子核衰变,则放出阿尔法粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,雌猫必死无疑。
这个残忍的装置由薛定谔所设计,所以雌猫便叫做薛定谔猫。
原子核的衰变是随机事件,物理学家所能精确知道的只是半衰期——衰变一半所需要的时间。
如果一种放射性元素的半衰期是一天,则过一天,该元素就少了一半,再过一天,就少了剩下的一半。
但是,物理学家却无法知道,它在什么时候衰变,上午,还是下午。
当然,物理学家知道它在上午或下午衰变的几率——也就是雌猫在上午或者下午死亡的几率。
如果我们不揭开密室的盖子,根据我们在日常生活中的经验,可以认定,雌猫或者死,或者活。
这是她的两种本征态。
但是,如果我们用薛定谔方程来描述薛定谔猫,则只能说,她处于一种活与不活的叠加态。
我们只有在揭开盖子的一瞬间,才能确切地知道雌猫是死是活。
此时,猫的波函数由叠加态立即收缩到某一个本征态。
量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道雌猫是死是活,她将永远到处于半死不活的叠加态。
这与我们的日常经验严重相违,要么死,要么活,怎么可能不死不活,半死半活
薛定谔挖苦说:按照量子力学的解释,箱中之猫处于“死-活叠加态”——既死了又活着
要等到打开箱子看猫一眼才决定其生死。
(请注意
不是发现而是决定,仅仅看一眼就足以致命
)正像哈姆雷特王子所说:“是死,还是活,这可真是一个问题。
”只有当你打开盒子的时候,迭加态突然结束(在数学术语就是“坍缩(collapse)”),哈姆雷特王子的犹豫才终于结束,我们知道了猫的确定态:死,或者活。
哥本哈根的几率诠释的优点是:只出现一个结果,这与我们观测到的结果相符合。
但是有一个大的问题:它要求波函数突然坍缩。
但物理学中没有一个公式能够描述这种坍缩。
尽管如此,长期以来物理学家们出于实用主义的考虑,还是接受了哥本哈根的诠释。
付出的代价是:违反了薛定谔方程。
这就难怪薛定谔一直耿耿于怀了。
寻找薛定谔猫哥本哈根诠释在很长的一段时间成了“正统的”、“标准的”诠释。
但那只不死不活的猫却总是像恶梦一样让物理学家们不得安宁。
格利宾在《寻找薛定谔的猫》中想告诉我们的是,哥本哈根诠释在哪儿失败,以及用什么诠释可以替代它。
1957年,埃弗雷特提出的“多世界诠释”似乎为人们带来了福音,虽然由于它太离奇开始没有人认真对待。
格利宾认为,多世界诠释有许多优点,由此它可以代替哥本哈根诠释。
我们下面简单介绍一下埃弗雷特的多世界诠释。
格利宾在书中写道:“埃弗雷特……指出两只猫都是真实的。
有一只活猫,有一只死猫,但它们位于不同的世界中。
问题并不在于盒子中的放射性原子是否衰变,而在于它既衰变又不衰变。
当我们向盒子里看时,整个世界分裂成它自己的两个版本。
这两个版本在其余的各个方面都是全同的。
唯一的区别在于其中一个版本中,原子衰变了,猫死了;而在另一个版本中,原子没有衰变,猫还活着。
” 也就是说,上面说的“原子衰变了,猫死了;原子没有衰变,猫还活着”这两个世界将完全相互独立地演变下去,就像两个平行的世界一样。
格利宾显然十分赞赏这一诠释,所以他接着说:“这听起来就像科幻小说,然而……它是基于无懈可击的数学方程,基于量子力学朴实的、自洽的、符合逻辑的结果。
”“在量子的多世界中,我们通过参与而选择出自己的道路。
在我们生活的这个世界上,没有隐变量,上帝不会掷骰子,一切都是真实的。
”按格利宾所说,爱因斯坦如果还活着,他也许会同意并大大地赞扬这一个“没有隐变量,上帝不会掷骰子”的理论。
这个诠释的优点是:薛定谔方程始终成立,波函数从不坍缩,由此它简化了基本理论。
它的问题是:设想过于离奇,付出的代价是这些平行的世界全都是同样真实的。
这就难怪有人说:“在科学史上,多世界诠释无疑是目前所提出的最大胆、最野心勃勃的理论。
”薛定谔方程 埃尔温·薛定谔在20世纪20年代中期创立了现在被称为量子力学分支中的一个方程。
后来被称之为薛定谔方程:▽²ψ(x,y,z)+(8π²m\\\/h²)[E-U(x,y,z)]ψ(x,y,z)=0 量子理论是20世纪科学的重大进展之一,但由于量子力学对传统观念所带来的巨大冲击,连“量子”的提出者在内的科学家都想尽各种办法拒绝它,或做出各种调和性的解释。
事实上,薛定谔就被量子力学的结果弄得心神不安,他不喜欢波粒二象性的二元解释以及波的统计解释,试图建立一个只用波来解释的理论。
薛定谔尝试着用一个理想实验来检验量子理论隐含的不确之处。
设想在一个封闭的匣子里,有一只活猫及一瓶毒药。
当衰变发生时,药瓶被打破,猫将被毒死。
按照常识,猫可能死了也可能还活着。
但是量子力学告诉我们,存在一个中间态,猫既不死也不活,直到进行观察看看发生了什么。
量子力学告诉我们:除非进行观测,否则一切都不是真实的。
爱因斯坦和少数非主流派物理学家拒绝接受由薛定谔及其同事创立的理论结果。
爱因斯坦认为,量子力学只不过是对原子及亚原子粒子行为的一个合理的描述,是一种唯象理论,它本身不是终极真理。
他说过一句名言:“上帝不会掷骰子。
”他不承认薛定谔的猫的非本征态之说,认为一定有一个内在的机制组成了事物的真实本性。
他花了数年时间企图设计一个实验来检验这种内在真实性是否确在起作用,但他没有完成这种设计就去世了。
薛定谔猫态 美国科学家宣布,他们成功让6个铍离子系统实现了自旋方向完全相反的宏观量子叠加态,也就是量子力学理论中的“薛定谔猫”态。
根据量子力学理论,物质在微观尺度上存在两种完全相反状态并存的奇特状况,这被称为有效的相干叠加态。
由大量微观粒子组成的宏观世界是否也遵循量子叠加原理
奥地利物理学家薛定谔为此在1935年提出著名的“薛定谔猫”佯谬。
“薛定谔猫”佯谬假设了这样一种情况:将一只猫关在装有少量镭和氰化物的密闭容器里。
镭的衰变存在几率,如果镭发生衰变,会触发机关打碎装有氰化物的瓶子,猫就会死;如果镭不发生衰变,猫就存活。
根据量子力学理论,由于放射性的镭处于衰变和没有衰变两种状态的叠加,猫就理应处于死猫和活猫的叠加状态。
这只既死又活的猫就是所谓的“薛定谔猫”。
显然,既死又活的猫是荒谬的。
薛定谔想要借此阐述的物理问题是:宏观世界是否也遵从适用于微观尺度的量子叠加原理。
“薛定谔猫”佯谬巧妙地把微观放射源和宏观的猫联系起来,旨在否定宏观世界存在量子叠加态。
然而随着量子力学的发展,科学家已先后通过各种方案获得了宏观量子叠加态。
此前,科学家最多使4个离子或5个光子达到“薛定谔猫”态。
但如何使更多粒子构成的系统达到这种状态并保存更长时间,已成为实验物理学的一大挑战。
美国国家标准和技术研究所的莱布弗里特等人在最新一期《自然》杂志上称,他们已实现拥有粒子较多而且持续时间最长的“薛定谔猫”态。
实验中,研究人员将铍离子每隔若干微米“固定”在电磁场阱中,然后用激光使铍离子冷却到接近绝对零度,并分三步操纵这些离子的运动。
为了让尽可能多的粒子在尽可能长的时间里实现“薛定谔猫”态,研究人员一方面提高激光的冷却效率,另一方面使电磁场阱尽可能多地吸收离子振动发出的热量。
最终,他们使6个铍离子在50微秒内同时顺时针自旋和逆时针自旋,实现了两种相反量子态的等量叠加纠缠,也就是“薛定谔猫”态。
奥地利因斯布鲁克大学的研究人员也在同期《自然》杂志上报告说,他们在8个离子的系统中实现了“薛定谔猫”态,但维持时间稍短。
科学家称,“薛定谔猫”态不仅具有理论研究意义,也有实际应用的潜力。
比如,多粒子的“薛定谔猫”态系统可以作为未来高容错量子计算机的核心部件,也可以用来制造极其灵敏的传感器以及原子钟、干涉仪等精密测量装备。
薛定谔猫公众议论 薛定谔的实验把量子效应放大到了我们的日常世界,现在量子的奇特性质牵涉到我们的日常生活了,牵涉到我们心爱的宠物猫究竟是死还是活的问题。
这个实验虽然简单,却比EPR要辛辣许多,这一次扎得哥本哈根派够疼的。
他们不得不退一步以咽下这杯苦酒:是的,当我们没有观察的时候,那只猫的确是又死又活的。
量子派后来有一个被哄传得很广的论调说:“当我们不观察时,月亮是不存在的”。
这稍稍偏离了本意,准确来说,因为月亮也是由不确定的粒子组成的,所以如果我们转过头不去看月亮,那一大堆粒子就开始按照波函数弥散开去。
于是乎,月亮的边缘开始显得模糊而不确定,它逐渐“融化”,变成概率波扩散到周围的空间里去。
当然这么大一个月亮完全融化成空间中的概率是需要很长很长时间的,不过问题的实质是:要是不观察月亮,它就从确定的状态变成无数不确定的叠加。
不观察它时,一个确定的,客观的月亮是不存在的。
但只要一回头,一轮明月便又高悬空中,似乎什么事也没发生过一样。
不能不承认,这听起来很有强烈的主观唯心论的味道。
虽然它其实和我们通常理解的那种哲学理论有一定区别,不过讲到这里,许多人大概都会自然而然地想起贝克莱(George Berkeley)主教的那句名言:“存在就是被感知”(拉丁文:Esse Est Percipi)。
这句话要是稍微改一改讲成“存在就是被测量”,那就和哥本哈根派的意思差不离了。
贝克莱在哲学史上的地位无疑是重要的,但人们通常乐于批判他,我们的哥本哈根派是否比他走得更远呢
好歹贝克莱还认为事物是连续客观地存在的,因为总有“上帝”在不停地看着一切。
而量子论
“陛下,我不需要上帝这个假设”。
与贝克莱互相辉映的东方代表大概要算王阳明。
他在《传习录·下》中也说过一句有名的话:“你未看此花时,此花与汝同归于寂;你来看此花时,则此花颜色一时明白起来……”如果王阳明懂量子论,他多半会说:“你未观测此花时,此花并未实在地存在,按波函数而归于寂;你来观测此花时,则此花波函数发生坍缩,它的颜色一时变成明白的实在……”测量即是理,测量外无理。
霍金谈不确定性原理科学理论,特别是牛顿引力论的成功,使得法国科学家拉普拉斯侯爵在19世纪初论断,宇宙是完全被决定的。
他认为存在一组科学定律,只要我们完全知道宇宙在某一时刻的状态,我们便能依此预言宇宙中将会发生的任一事件。
例如,假定我们知道某一个时刻的太阳和行星的位置和速度,则可用牛顿定律计算出在任何其他时刻的太阳系的状态。
这种情形下的宿命论是显而易见的,但拉普拉斯进一步假定存在着某些定律,它们类似地制约其他每一件东西,包括人类的行为。
很多人强烈地抵制这种科学宿命论的教义,他们感到这侵犯了上帝干涉世界的自由。
但直到本世纪初,这种观念仍被认为是科学的标准假定。
这种信念必须被抛弃的一个最初的征兆,是由英国科学家瑞利勋爵和詹姆斯·金斯爵士所做的计算,他们指出一个热的物体——例如恒星——必须以无限大的速率辐射出能量。
按照当时我们所相信的定律,一个热体必须在所有的频段同等地发出电磁波(诸如无线电波、可见光或X射线)。
例如,一个热体在1万亿赫兹到2万亿赫兹频率之间发出和在2万亿赫兹到3万亿赫兹频率之间同样能量的波。
而既然波的频谱是无限的,这意味着辐射出的总能量必须是无限的。
为了避免这显然荒谬的结果,德国科学家马克斯·普郎克在1900年提出,光波、X射线和其他波不能以任意的速率辐射,而必须以某种称为量子的形式发射。
并且,每个量子具有确定的能量,波的频率越高,其能量越大。
这样,在足够高的频率下,辐射单独量子所需要的能量比所能得到的还要多。
因此,在高频下辐射被减少了,物体丧失能量的速率变成有限的了。
量子假设可以非常好地解释所观测到的热体的发射率,但直到1926年另一个德国科学家威纳·海森堡提出著名的不确定性原理之后,它对宿命论的含义才被意识到。
为了预言一个粒子未来的位置和速度,人们必须能准确地测量它现在的位置和速度。
显而易见的办法是将光照到这粒子上,一部分光波被此粒子散射开来,由此指明它的位置。
然而,人们不可能将粒子的位置确定到比光的两个波峰之间距离更小的程度,所以必须用短波长的光来测量粒子的位置。
现在,由普郎克的量子假设,人们不能用任意少的光的数量,至少要用一个光量子。
这量子会扰动这粒子,并以一种不能预见的方式改变粒子的速度。
而且,位置测量得越准确,所需的波长就越短,单独量子的能量就越大,这样粒子的速度就被扰动得越厉害。
换言之,你对粒子的位置测量得越准确,你对速度的测量就越不准确,反之亦然。
海森堡指出,粒子位置的不确定性乘上粒子质量再乘以速度的不确定性不能小于一个确定量——普郎克常数。
并且,这个极限既不依赖于测量粒子位置和速度的方法,也不依赖于粒子的种类。
海森堡不确定性原理是世界的一个基本的不可回避的性质。
不确定性原理对我们世界观有非常深远的影响。
甚至到了50多年之后,它还不为许多哲学家所鉴赏,仍然是许多争议的主题。
不确定性原理使拉普拉斯科学理论,即一个完全宿命论的宇宙模型的梦想寿终正寝:如果人们甚至不能准确地测量宇宙的现在的态,就肯定不能准确地预言将来的事件了
我们仍然可以想像,对于一些超自然的生物,存在一组完全地决定事件的定律,这些生物能够不干扰宇宙地观测它现在的状态。
然而,对于我们这些芸芸众生而言,这样的宇宙模型并没有太多的兴趣。
看来,最好是采用称为奥铿剃刀的经济学原理,将理论中不能被观测到的所有特征都割除掉。
20世纪20年代。
在不确定性原理的基础上,海森堡、厄文·薛定谔和保尔·狄拉克运用这种手段将力学重新表达成称为量子力学的新理论。
在此理论中,粒子不再有分别被很好定义的、能被同时观测的位置和速度,而代之以位置和速度的结合物的量子态。
一般而言,量子力学并不对一次观测预言一个单独的确定结果。
代之,它预言一组不同的可能发生的结果,并告诉我们每个结果出现的概率。
也就是说,如果我们对大量的类似的系统作同样的测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。
人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果作出预言。
因而量子力学为科学引进了不可避免的非预见性或偶然性。
尽管爱因斯坦在发展这些观念时起了很大作用,但他非常强烈地反对这些。
他之所以得到诺贝尔奖就是因为对量子理论的贡献。
即使这样,他也从不接受宇宙受机遇控制的观点;他的感觉可表达成他著名的断言:“上帝不玩弄骰子。
”然而,大多数其他科学家愿意接受量子力学,因为它和实验符合得很完美。
它的的确确成为一个极其成功的理论,并成为几乎所有现代科学技术的基础。
它制约着晶体管和集成电路的行为,而这些正是电子设备诸如电视、计算机的基本元件。
它并且是现代化学和生物学的基础。
物理科学未让量子力学进入的唯一领域是引力和宇宙的大尺度结构。
虽然光是由波组成的,普郎克的量子假设告诉我们,在某些方面,它的行为似乎显现出它是由粒子组成的——它只能以量子的形式被发射或吸收。
同样地,海森堡的不确定性原理意味着,粒子在某些方面的行为像波一样:它们没有确定的位置,而是被“抹平”成一定的几率分布。
量子力学的理论是基于一个全新的数学基础之上,不再按照粒子和波动来描述实际的世界;而只不过利用这些术语,来描述对世界的观测而已。
所以,在量子力学中存在着波动和粒子的二重性:为了某些目的将波动想像成为粒子是有助的,反之亦然。
这导致一个很重要的后果,人们可以观察到两组波或粒子的所谓的干涉,也就是一束波的波峰可以和另一束波的波谷相重合。
这两束波互相抵消,而不是像人们预料的那样,迭加在一起形成更强的波(图 4.1)。
一个熟知的光的干涉的例子是,肥皂泡上经常能看到颜色。
这是因为从形成泡沫的很薄的水膜的两边反射回来的光互相干涉而引起的。
白光含有所有不同波长或颜色的光波,从水膜一边反射回来的具有一定波长的波的波峰和从另一边反射的波谷相重合时,对应于此波长的颜色就不在反射光中出现,所以反射光就显得五彩缤纷。
由于量子力学引进的二重性,粒子也会产生干涉。
一个著名的例子即是所谓的双缝实验(图4.2)。
一个带有两个平行狭缝的隔板,在它的一边放上一个特定颜色(即特定波长)的光源。
大部分光都射在隔板上,但是一小部分光通过这两条缝。
现在假定将一个屏幕放到隔板的另一边。
屏幕上的任何一点都能接收到两个缝来的波。
然而,一般来说,光从光源通过这两个狭缝传到屏幕上的距离是不同的。
这表明,从狭缝来的光到达屏幕之时不再是同位相的:有些地方波动互相抵消,其他地方它们互相加强,结果形成有亮暗条纹的特征花样。
非常令人惊异的是,如果将光源换成粒子源,譬如具有一定速度(这表明其对应的波有同样的波长)的电子束,人们得到完全同样类型的条纹。
这显得更为古怪,因为如果只有一条裂缝,则得不到任何条纹,只不过是电子通过这屏幕的均匀分布。
人们因此可能会想到,另开一条缝只不过是打到屏幕上每一点的电子数目增加而已。
但是,实际上由于干涉,在某些地方反而减少了。
如果在一个时刻只有一个电子被发出通过狭缝,人们会以为,每个电子只穿过其中的一条缝,这样它的行为正如同另一个狭缝不存在时一样——屏幕会给出一个均匀的分布。
然而,实际上即使电子是一个一个地发出,条纹仍然出现,所以每个电子必须在同一时刻通过两个小缝
粒子间的干涉现象,对于我们理解作为化学和生物以及由之构成我们和我们周围的所有东西的基本单元的原子的结构是关键的。
在本世纪初,人们认为原子和行星绕着太阳公转相当类似,在这儿电子(带负电荷的粒子)绕着带正电荷的中心的核转动。
正电荷和负电荷之间的吸引力被认为是用以维持电子的轨道,正如同行星和太阳之间的万有引力用以维持行星的轨道一样。
麻烦在于,在量子力学之前,力学和电学的定律预言,电子会失去能量并以螺旋线的轨道落向并最终撞击到核上去。
这表明原子(实际上所有的物质)都会很快地坍缩成一种非常紧密的状态。
丹麦科学家尼尔斯·玻尔在1913年,为此问题找到了部分的解答。
他认为,也许电子不能允许在离中心核任意远的地方,而只允许在一些指定的距离处公转。
如果我们再假定,只有一个或两个电子能在这些距离上的任一轨道上公转,那就解决了原子坍缩的问题。
因为电子除了充满最小距离和最小能量的轨道外,不能进一步作螺旋运动向核靠近。
对于最简单的原子——氢原子,这个模型给出了相当好的解释,这儿只有一个电子绕着氢原子核运动。
但人们不清楚如何将其推广到更复杂的原子去。
并且,对于可允许轨道的有限集合的思想显得非常任意。
量子力学的新理论解决了这一困难。
原来一个绕核运动的电荷可看成一种波,其波长依赖于其速度。
对于一定的轨道,轨道的长度对应于整数(而不是分数)倍电子的波长。
对于这些轨道,每绕一圈波峰总在同一位置,所以波就互相迭加;这些轨道对应于玻尔的可允许的轨道。
然而,对于那些长度不为波长整数倍的轨道,当电子绕着运动时,每个波峰将最终被波谷所抵消;这些轨道是不能允许的。
美国科学家里查德·费因曼引入的所谓对历史求和(即路径积分)的方法是一个波粒二像性的很好的摹写。
在这方法中,粒子不像在经典亦即非量子理论中那样,在时空中只有一个历史或一个轨道,而是认为从A到B粒子可走任何可能的轨道。
对应于每个轨道有一对数:一个数表示波的幅度;另一个表示在周期循环中的位置(即相位)。
从A走到B的几率是将所有轨道的波加起来。
一般说来,如果比较一族邻近的轨道,相位或周期循环中的位置会差别很大。
这表明相应于这些轨道的波几乎都互相抵消了。
然而,对于某些邻近轨道的集合,它们之间的相位没有很大变化,这些轨道的波不会抵消。
这种轨道即对应于玻尔的允许轨道。
用这些思想以具体的数学形式,可以相对直截了当地计算更复杂的原子甚至分子的允许轨道。
分子是由一些原子因轨道上的电子绕着不止一个原子核运动而束缚在一起形成的。
由于分子的结构,以及它们之间的反应构成了化学和生物的基础,除了受测不准原理限制之外,量子力学在原则上允许我们去预言围绕我们的几乎一切东西。
(然而,实际上对一个包含稍微多几个电子的系统所需的计算是如此之复杂,以至使我们做不到。
)看来,爱因斯坦广义相对论制约了宇宙的大尺度结构,它仅能称为经典理论,因其中并没有考虑量子力学的不确定性原理,而为了和其他理论一致这是必须考虑的。
这个理论并没导致和观测的偏离是因为我们通常经验到的引力场非常弱。
然而,前面讨论的奇点定理指出,至少在两种情形下引力场会变得非常强——黑洞和大爆炸。
在这样强的场里,量子力学效应应该是非常重要的。
因此,在某种意义上,经典广义相对论由于预言无限大密度的点而预示了自身的垮台,正如同经典(也就是非量子)力学由于隐含着原子必须坍缩成无限的密度,而预言自身的垮台一样。
我们还没有一个完整、协调的统一广义相对论和量子力学的理论,但我们已知这理论所应有的一系列特征。
在以下几章我们将描述黑洞和大爆炸的量子引力论效应。
然而,此刻我们先转去介绍人类的许多新近的尝试,他们试图对自然界中其他力的理解合并成一个单独的统一的量子理论。



