
以“美妙的黄金分割”为题写一篇数学课题报告,内容要有3个生活黄金分割应用 字数(400~500)
答:黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618。
这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
黄金分割〔Golden Section〕是一种数学上的比例关系。
黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。
应用时一般取0.618 ,就像圆周率在应用时取3.14一样。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。
在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。
黄金分割的比例的证明
近年来,在研究黄金分割与人体关系时,发现了人体结构中有14个“黄金点”(物体短段与长段之比值为 0.618),12个“黄金矩形”(宽与长比值为 0.618的长方形)和2个“黄金指数”(两物体间的比例关系为 0.618)。
黄金点:(1)肚脐:头顶-足底之分割点;(2)咽喉:头顶-肚脐之分割点;(3)、(4)膝关节:肚脐-足底之分割点;(5)、(6)肘关节:肩关节-中指尖之分割点;(7)、(8)乳头:躯干乳头纵轴上这分割点;(9)眉间点:发际-颏底间距上1\\\/3与中下2\\\/3之分割点;(10)鼻下点:发际-颏底间距下1\\\/3与上中2\\\/3之分割点;(11)唇珠点:鼻底-颏底间距上1\\\/3与中下2\\\/3之分割点;(12)颏唇沟正路点:鼻底-颏底间距下1\\\/3与上中2\\\/3之分割点;(13)左口角点:口裂水平线左1\\\/3与右2\\\/3之分割点;(14) 右口角点:口裂水平线右1\\\/3与左2\\\/3之分割点。
面部黄金分割律 面部三庭五眼 黄金矩形:(1)躯体轮廓:肩宽与臀宽的平均数为宽,肩峰至臀底的高度为长;(2)面部轮廓:眼水平线的面宽为宽,发际至颏底间距为长;(3)鼻部轮廓:鼻翼为宽,鼻根至鼻底间距为长;(4)唇部轮廓:静止状态时上下唇峰间距为宽,口角间距为长;(5)、(6)手部轮廓:手的横径为宽,五指并拢时取平均数为长;(7)、(8)、(9)、(10)、(11)、(12)上颌切牙、侧切牙、尖牙(左右各三个)轮廓:最大的近远中径为宽,齿龈径为长。
黄金分割比建筑
建筑物中某些线段就科学采用了黄金,希腊雅典的农神庙就是一个很例子,古希腊巴特农神庙是举世闻名的完美建筑,它的高和宽的比是0.618。
建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目. 建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。
科学家和艺术家普遍认为,黄金律是建筑艺术必须遵循的规律。
因此古代的建筑大师和雕塑家们就巧妙地利用黄金分割比创造出了雄伟壮观的建筑杰作和令人倾倒的艺术珍品:公元前3000年建造的胡夫大金字塔,其原高度与底部边长约为1:1.6,公元前五世纪建造的庄严肃穆的雅典巴特农神殿(Parthenon at Athens),建筑于古希腊数学繁荣的年代,并且它的美丽就是建立在严格的数学法则上的.如果我们在神庙周围描一个矩形,那么发现,它的长是宽的大约1.6倍,这种矩形称为黄金矩形。
当今世界最高建筑之一的加拿大多伦多电视塔,塔高553.3m, 而其七层的工作厅建与340m的半空,其比为340:553≈0.615。
无独有偶,这三座具有历史意义的不同时期的建筑,都不约而同地用到了黄金比。
黄金分割点的证明方法
设有1根长为1的线段AB,在靠近B端的地方取点C(AC>CB),使AC:CB=AB:AC,则C点为AB的黄金分割点。
设AC=x,则BC=1-x,代入定义式AC:CB=AB:AC,可得: x:(1-x)=1:x即 x平方+x-1=0解该二次方程,x1=(根号5-1)\\\/2 x2=(-根号5-1)\\\/2 其中x2是负值舍掉所以AC=(根号5-1)\\\/2 约为0.618



