
高中生关于蝴蝶效应的演讲稿
蝴蝶效应:The Butterfly Effect蝴蝶效应:上个世纪70年代,美国一个名叫洛伦兹的气象学家在解释空气系统理论时说,亚马逊雨林一只蝴蝶翅膀偶尔振动,也许两周后就会引起美国得克萨斯州的一场龙卷风。
蝴蝶效应是说,初始条件十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别。
有些小事可以糊涂,有些小事如经系统放大,则对一个组织、一个国家来说是很重要的,就不能糊涂。
那些疯狂到以为自己能够改变世界的人,才能真正改变世界. 求大神帮忙写一篇演讲稿 2分钟 谢谢了 在线等
我并不疯狂但我希望能够改变世界所以我应当疯狂因为有人说,只有疯狂才能改变世界对了还有人说,演讲稿要2分钟但我觉得疯狂的人改变世界就从改变这一秒开始……剩下的应该是1分零39秒的掌声谢谢
蝴蝶和龙卷风的演讲稿
美国气象学家爱德华·罗伦兹(Edward N.Lorentz)1963年在一篇提交纽约科学院的论文中分析了这个效应。
“一个气象学家提及,如果这个理论被证明正确,一只海鸥扇动翅膀足以永远改变天气变化。
”在以后的演讲和论文中他用了更加有诗意的蝴蝶。
对于这个效应最常见的阐述是:“一只南美洲亚马逊河流域热带雨林中的蝴蝶,偶尔扇动几下翅膀,可以在两周以后引起美国德克萨斯州的一场龙卷风。
”其原因就是蝴蝶扇动翅膀的运动,导致其身边的空气系统发生变化,并产生微弱的气流,而微弱的气流的产生又会引起四周空气或其他系统产生相应的变化,由此引起一个连锁反应,最终导致其他系统的极大变化。
它称之为混沌学。
这句话的来源,是这位气象学家制作了一个电脑程序,这个可以模拟气候的变化,并用图像来表示。
最后他发现,图像是混沌的,而且十分像一只张开双翅的蝴蝶,因而他形象地将这一图形以“蝴蝶扇动翅膀”的方式进行阐释,于是便有了上述的说法。
蝴蝶效应通常用于天气、股票市场等在一定时段难以预测的比较复杂的系统中。
此效应说明,事物发展的结果,对初始条件具有极为敏感的依赖性,初始条件的极小偏差,将会引起结果的极大差异。
蝴蝶效应在社会学界用来说明:一个坏的微小的机制,如果不加以及时地引导、调节,会给社会带来非常大的危害,戏称为“龙卷风”或“风暴”;一个好的微小的机制,只要正确指引,经过一段时间的努力,将会产生轰动效应,或称为“革命”。
责任,态度,信心
1、趣味数学小故事—200字泰勒斯看到人们看告示,便上去看。
原来告示上法找世界上最聪明的人来测量金字塔的高度。
于是就找法老。
法老问泰勒斯用什么工具来量金字塔。
泰勒斯说只用一根木棍和一把尺子,他把木棍插在金字塔旁边,等木棍的影子和木棍一样长的时候,他量了金字塔影子的长度和金字塔底面边长的一半。
把这两个长度加起来就是金字塔的高度了。
泰勒斯真是世界上最聪明的人,他不用爬到金字塔的顶上就方便量出了金字塔的高度。
2、趣味数学小故事——200字战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。
比赛分三次进行,每赛马以千金作赌。
由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。
这是我国古代运用对策论思想解决问题的一个范例。
3、趣味数学小故事——200字动物学校举办儿歌比赛,大象老师做裁判。
小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。
个位对齐个位加,满十要向十位进。
十位相加再加一,得数算得快又准。
”小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。
个位数小不够减,要向十位借个一。
十位退一是一十,退了以后少个一。
十位数字怎么减,十位退一再去减。
”大家都为它们的精彩表演鼓掌。
大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好
”大家同意并鼓掌祝贺它们。
4、趣味数学小故事——200字气象学家Lorenz提出一篇论文,名叫《一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风
》论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。
就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。
Lorenz为何要写这篇论文呢
这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。
平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
5、趣味数学小故事——200字唐僧师徒四人走在无边无际的沙漠上,他们又饿又累,猪八戒想:如果有一顿美餐该有多好啊
孙悟空可没有八戒那么贪心,悟空只想喝一杯水就够了。
孙悟空想着想着,眼前就出现了一户人家,门口的桌上正好放了一杯牛奶,孙悟空连忙上前,准备把这杯牛奶喝了,可主人家却说:“大圣且慢,如果您想喝这杯奶就必须回答对一道数学题。
”孙悟空想,不就一道数学题吗,难不倒俺老孙。
孙悟空就答应了。
那位主人家出题:倒了一杯牛奶,你先喝了1\\\/2加满水,再喝1\\\/3,又加满水,最后把这杯饮料全喝下,问你喝的牛奶和水哪个多些
为什么
6、趣味数学小故事——300字傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥。
请问:果园里有苹果树和梨树各多少棵
我没有被这道题吓倒,难题能激发我的兴趣。
我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥。
而实际他每天只给50棵苹果树施肥,差了10棵,最后共差了80棵,从这里可以得知,老王师傅已经施了8天肥。
一天20棵梨树,8天就是160棵梨树,再根据第一个条件,可以知道苹果树是480棵。
这就是用假设的思路来解题,因此我想,假设法实在是一种很好的解题方法。
7、趣味数学小故事——300字阿基米德有许多故事,其中最着名的要算发现阿基米德定律的那个洗澡的故事了。
国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。
阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电,“我找到了
”阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。
于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。
随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。
8、趣味数学小故事——300字当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时间处理一些自己的私事,因此打算出一道难题给学生练习。
他的题目是:1+2+3+4+5+6+7+8+9+10=
因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。
自己也就可以藉此机会来处理未完的事情。
但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里。
老师看了,很生气地训斥高斯。
但是高斯却说他已经将答案算出来了,就是55。
老师听了吓了一跳,就问高斯如何算出来的。
高斯答道:“我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又因为11+11+11+11+11=55,所以我就是这么算出来了。
”老师同学听了以后,都对高斯竖起了大拇指。
后来的高斯长大后,成为了一位很伟大的数学家。
9、趣味数学小故事——300字八戒去花果山找悟空,大圣不在家。
小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:“大家一起吃
”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3……1八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧
”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。
悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他
”哈哈,你知道八戒吃了几个山桃
10、趣味数学小故事——300字一家手杖店来了一个顾客,买了30元一根的手杖。
他拿出一张50元的票子,要求找钱。
店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头。
顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的。
店主不得已向邻居赔偿了50元。
随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失。
”这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元。
”请你计算一下,手杖店真正的损失是多少
这里要补充一下,手杖的成本是20元。
如果这个顾客行骗成功,那么共骗得了多少钱
王者荣耀庄周说的话是什么 王者荣耀庄周台词解析
一群人在人家梦里打来打去,有意思吗 天地与我并生,万物与我为宜 我的坐骑可是纯天然无污染 死亡,美妙的长眠,值得高歌一曲,啦~~~ 其实刚才说的全是梦话 梦里花落知多少
急急急急 有关生活中、自然界中的数学现象、数学故事,共十篇。
不要太长,50字左右, 帮帮忙吧啊,
1、蝴蝶效应 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风
」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。
就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。
Lorenz为何要写这篇论文呢
这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。
平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。
当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。
在一小时后,结果出来了,不过令他目瞪口呆。
结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。
而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。
所以长期的准确预测天气是不可能的。
参考资料:阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。
组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。
蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。
“人”字形的角度是110度。
更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒
而金刚石结晶体的角度正好也是54度44分8秒
是巧合还是某种大自然的“默契”
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。
珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。
奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。
天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
(生活时报) 1.无穷是什么? 一位富翁偶然听到一个数学教授给学生谈论“无穷”,心里便琢磨, 这“有限多个”好理解,比如,我的钱财,可这“无穷”是什么呢
难道就是跟自然数一样多, 或者“更多”
富翁想知道自己理解的究竟对不对,于是就问教授:“教授先生,‘无穷’是什么
”教授回答说:“无穷就是没有穷人,都象您一样富有。
” 教授看到富翁不理解的样子,就进一步解说:“想一想,如果地球上的人有无穷多个,比如说,可以和自然数对应起来,而且每个人只有一元钱,不要多,那么 第一个人问第二个人借一元,第二个问第三个人借一元, 依次往后借,如此下去,第一个人就有2元钱,其他人也没有少钱。
” 富翁点头承认,并说:“那还是没有我的钱多。
” 教授接着说:“如果第一个人重复一百万次,那不就是百万富豪了
”富翁这才恍然大悟,明白了“无穷”是什么。
2.名人的生日 众所周知, 名人、伟人都有不寻常的个人特性。
如果你学代数,算一算他们的生日, 你就会发现,所有的名人和伟人的生日都具有如下的一个特点: 如:爱因斯坦的生日是:1879年3月14日,将年月日写在一起是 1879314。
把这个数随意排列一下,可得到另一个数,比如: 4187139。
用大的数减去小的数得到一个差:4187139-1879314 = 2307825。
将差的各个位数相加得到一个数,2+3+0+7+8+2+5 = 27, 再将这个数的位数相加,其和是9。
即最后得到一个最大的一位数9。
按上述方法来计算数学家高斯的生日:高斯生于1867年11月7日,于是可得一个数 1867117, 重新排列后的数比如是1167781,差数为 1867117-1167781 = 669336,算其位数和可得: 6+9+9+3+3+6 = 36,再算位数之和, 最后得 3+6 = 9。
同样,最后得到一个最大的一位数9。
所有的著名人物的生日都有这样的特点。
这是成为著名人物的“必要条件”。
智斗猪八戒 话说唐僧师徒西天取经归来,来到郭家村,受到村民的热烈欢迎,大家都把他们当作除魔降妖的大英雄,不仅与他们合影留念,还拉他们到家里作客。
面对村民的盛情款待,师徒们觉得过意不去,一有机会就帮助他们收割庄稼,耕田耙地。
开始几天猪八戒还挺卖力气,可过不了几天,好吃懒做的坏毛病又犯了。
他觉得这样干活太辛苦了,师傅多舒服,只管坐着讲经念佛就什么都有了。
其实师傅也没什么了不起的,要不是猴哥凭着他的火眼金睛和一身的本领,师傅恐怕连西天都去不了,更别说取经了。
要是我也有这么一个徒弟,也能有一番作为,到那时,哈哈,我就可以享清福了。
于是八戒就开始张落起这件事来,没几天就召收了9个徒弟,他给他们取名:小一戒、小二戒…小九戒。
按理说,现在八戒应该潜心修炼,专心教导徒弟了。
可是他仍然恶习不改,经常带着徒弟出去蹭吃蹭喝,吃得老百姓叫苦不迭。
老百姓想着他们曾经为大家做的好事,谁也不好意思到悟空那里告状。
就这样,八戒们更是有恃无恐,大开吃戒,一顿要吃掉五、六百个馒头,老百姓被他们吃得快揭不开锅了。
邻村有个叫灵芝的姑娘,她聪明伶俐,为人善良,经常用自己的智慧巧斗恶人。
她听了这件事后,决定惩治一下八戒们。
她来到郭家村,开了一个饭铺,八戒们闻讯赶来,灵芝姑娘假装惊喜地说:“悟能师傅,你能到我的饭铺,真是太荣幸了。
以后你们就到我这儿来吃饭,不要到别的地方去了。
”她停了一下说:“这儿有张圆桌,专门为你们准备的,你们十位每次都按不同的次序入座,等你们把所有的次序都坐完了,我就免费提供你们饭菜。
但在此之前,你们每吃一顿饭,都必须为村里的一户村民做一件好事,你们看怎么样
”八戒们一听这诱人的建议,兴奋得不得了,连声说好。
于是他们每次都按约定的条件来吃饭,并记下入座次序。
这样过了几年,新的次序仍然层出不穷,八戒百思不得其解,只好去向悟空请教。
悟空听了不禁哈哈大笑起来,说:“你这呆子,这么简单的帐都算不过来,还想去沾便宜,你们是永远也吃不到这顿免费饭菜的。
”“难道我们吃二、三十年,还吃不到吗
”悟空说:“那我就给你算算这笔帐吧。
我们先从简单的数算起。
假设是三个人吃饭,我们先给他们编上1、2、3的序号,排列的次序就有6种,即123,132,213,231,312,321。
如果是四个人吃钣,第一个人坐着不动,其他三个人的座位就要变换六次,当四个人都轮流作为第一个人坐着不动时,总的排列次序就是6×4=24种。
按就样的方法,可以推算出:五个人去吃饭,排列的次序就有24×5=120种……10个人去吃钣就会有3628800种不同的排列次序。
因为每天要吃3顿钣,用3628800÷3就可以算出要吃的天数:1209600天,也就是将近3320年。
你们想想,你们能吃到这顿免费钣菜吗
” 经悟空这么一算,八戒顿时明白了灵芝姑娘的用意,不禁羞愧万分。
从此以后,八戒经常带着徙弟们帮村民们干活。
他们又重新赢得了人们的喜欢。
取胜的对策 战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。
比赛分三次进行,每赛马以千金作赌。
由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(著名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。
这是我国古代运用对策论思想解决问题的一个范例。
下面有一个两人做的游戏:轮流报数,报出的数不能超过8(也不能是0),把两面三刀个人报出的数连加起来,谁报数后使和为88,谁就获胜。
如果让你先报数,你第一次应该报几才能一定获胜
分析:因为每人每次至少报1,最多报8,所以当某人报数之后,另一人必能找到一个数,使此数与某所报的数之和为9。
依照规则,谁报数后使和为88,谁就获胜,于是可推知,谁报数后和为79(=88-9),谁就获胜。
88=9×9+7,依次类推,谁报数后使和为16,谁就获胜。
进一步,谁先报7,谁就获胜。
于是得出先报者的取胜对策为:先报7,以后若对方报K(1≤K≤8),你就报(9-K)。
这样,当你报第10个数的时候,就会取得胜利。
蜗牛何时爬上井
一只蜗牛不小心掉进了一口枯井里。
它趴在井底哭了起来。
一只癞( lai)蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟
哭也没用,这井壁太高了,掉到这里就只能在这生活了。
我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了
”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里
”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬上去
请问这口井有多深
”“哈哈哈……,真是笑话
这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢
”“我不怕苦、不怕累,每天爬一段,总能爬出去
”第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。
它不停的爬呀,到了傍晚终于爬了5米。
蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。
”想着想着,它不知不觉地睡着了。
早上,蜗牛被一阵呼噜声吵醒了。
一看原来是癞大叔还在睡觉。
它心里一惊:“我怎么离井底这么近
”原来,蜗牛睡着以后从井壁上滑下来4米。
蜗牛叹了一口气,咬紧牙又开始往上爬。
到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。
爬呀爬,最后坚强地蜗牛终于爬上了井台。
小朋友你能猜出来,蜗牛需要用几天时间就能爬上井台吗



