
预期成果怎么写
我国发射发展回顾1970年4月24日中国第一颗“东方红”人造地球卫射成功以来,经过30年的发展,中国的卫星研制水平和制造技术不断提高,成功开发研制出了多种卫星,形成了不同的应用卫星系列,使一颗颗中国卫星在太空放射出耀眼的光芒。
我国用长征系列运载火箭先后发射了50多颗卫星,其中,科学技术实验卫星9颗,返回式遥感卫星17颗,通信广播卫星9颗,气象卫星2颗,资源遥感卫星2颗,导航定位卫星2颗,测量大气密度的气球卫星2颗,国外卫星10颗。
这些卫星的成功升空,不仅体现了我国科学技术的高速发展水平,使我国跨入了世界航天大国的行列,而且对促进国民经济发展和社会进步,以及提高国际地位等方面,都发挥出了极其重要的作用。
科学技术实验卫星在我国发射的9颗科学技术实验卫星中,前8颗是从酒泉发射中心发射的,最后一颗是从西昌发射中心发射的。
9颗卫星中,“东方红一号”和“实践一号”两颗卫星是用“长征一号”火箭运载升空的。
“技术实验卫星一号”、“技术实验卫星二号”和“技术实验卫星三号”这3颗卫星是由“风暴一号”运载火箭送上太空的。
接着,“风暴一号”还将另外三颗实验卫星,即“实践二号”、“实践二号甲”和“实践二号乙”采用一箭三星的办法,一举发射成功。
第9颗卫星为“实践四号”,它是用“长征三号甲”运载火箭发射上太空的一颗地球同步转移轨道卫星。
这9颗卫星不但在太空运行正常,而且为我国卫星新技术的发展以及空间物理探测作出了积极贡献。
如我国的第一颗人造地球卫星,从1965年下半年起,经过4年多的研制,于1970年初完成了卫星的总装测试和各种空间环境试验。
为了让全世界人们能用肉眼直接看到卫星在太空的邀游英姿和听到它发出的宏亮声音,采用的技术方案是:卫星与运载火箭分离入轨后,末级火箭将跟着卫星在空间上运行,还特意在本级火箭上加上“观测裙”,以提高火箭的亮度;同时,在卫星的壳体内装有《东方红》乐曲发生器和转播系统。
为了发射这颗卫星,还专门研制了“长征一号”三级运载火箭,卫星发射场也是在原导弹发射试验场基础上改建和扩建的,还在全国各地新建了不少地面观测台站。
所有这一切,虽然事先都作过论证和进行过必要的试验,但最后是否成功,还有待4月24日的飞行试验。
第一颗人造卫星的发射成功全面考核和验证了卫星、火箭、发射场和测控网各大系统的有效性和协调性。
卫星入轨后,卫星上各个系统都工作正常,实现了“看得见,听得到,抓得着”的要求,从一定意义上说,这也是我国科学技术实验卫星首次取得的重大成就。
1994年2月9日,我国的第9颗科学技术实验卫星——“实践四号”搭载“长征三号甲”运载火箭发射成功,这是我国在科学技术实验卫星的研制方面取得的又一重大成果。
“实践四号”空间探测卫星的主要探测目的是测量近地空间的带电粒子环境,研究它们对航天器的影响。
根据太空带电粒子的分布场情况,卫星选择了一条近地点高200公里,远地点高36000公里、倾角28度的较理想的运行轨道。
在近地点,卫星处于辐射带边线以下,随着卫星向高轨道方向运行,卫星将进入辐射带并穿越辐射最强的区域,最后到达辐射带外边缘以外地区。
这样,卫星大约每天有两次机会能测到辐射带沿高度分布的一个完整剖面。
为了达到预定的探测目的,卫星上共配备了高能电子探测器、高能质子和重离子探测器、等离子体探测器、电位监视器和单粒子事件探测器等5项计6台探测仪器。
由于配备的仪器考虑比较周到,可使探测的带电粒子成份比较完整,除电子、质子外,还有重离子;探测的能量也比较宽,几乎覆盖了对航天器有影响的所有能量范围;在探测空间环境带电粒子参数的同时,还能监视环境对卫星的效应。
“实践四号”的发射成功,不仅为太空带电粒子和航天器相互作用过程的研究提供了完整的、可相互印证的第一手数据。
而且使我们对充满于太空中的带电粒子所组成的“辐射带”、“电离层”、“等离子层”和“太阳风”等以及它们对航天器的影响有了新的认识,从而为最终达到减轻和消除它们对航天器的损伤迈出了可喜的一步。
返回式遥感卫星我国已发射的17颗返回式遥感卫星都是从酒泉基地发射升空的近地轨道卫星。
70年代的3颗卫星是用“长征二号”火箭运载升空的;80年代的8颗和90年代的第12,14颗是用“长征二号丙”火箭送上太空的;90年代的第13,16,17等3颗卫星则是用“长征二号丁”运载火箭依次发射成功的。
这16颗卫星均成功地返回降落在四川预定的落区。
其中,1992年、1994年和1996年11月4日返回大地的这3颗卫星属于我国第二代返回式卫星,卫星上所载的新型遥感器具有国际先进水平,分辨率达到几米,遥感图像清晰,标记齐全,信息量为第一代返回式卫星的13倍。
唯一比较遗憾的是,1993年10月8日用“长征二号丙”火箭发射的第15颗卫星未按预定计划返回祖国怀抱,它在茫茫太空不知所措地游荡了三年半后,于1996年3月12日坠落于大西洋南部海域。
由于我国发展应用卫星,首要目的是为了打破世界航天大国对空间技术的垄断,为战略方针服务,研制返回式卫星,掌握回收技术,成为我国优先要予以攻克的一项重要课题。
因此,早在60年代,党中央就原则批准把返回式侦察卫星作为发展重点。
在研制第一颗卫星的同时,就把侦察卫星所需的光学照相机、红外照相机、特种胶卷、姿态控制等关键技术,列入了预先研究计划。
70年代初,我国第一颗返回式照相侦察卫星正式列入国家计划后,中央领导同志在“文化大革命”的混乱年代,对这颗卫星的研制给予了特别关注。
1975年11月15日,这颗返回式卫星及“长征二号”运载火箭,在酒泉卫星发射中心完成技术阵地测试工作,随即转运发射阵地。
11月26日按时发射,卫星准确进入预定轨道,轨道近地点高度173公里,远地点高度483公里,轨道倾角63度,不仅入轨精度符合设计要求,而且卫星在太空运行47圈后,又按遥控站发出的返回调姿遥控指令,安全返回。
使我国初次尝试了卫星发射升空后又顺利返回地面的喜悦。
1976年12月,在粉碎“四人帮”的大喜日子里,我国又一颗经过改进设计的返回式卫星圆满完成发射、侦察和回收任务。
1978年1月,我国再一次进行了一次返回式卫星的发射,3天之后,返回。
1982年9月9日,我国新研制的实用型返回式卫星获得成功。
从此,返回式卫星进入了更加实用化的阶段。
在整个80年代,一共发射了8颗卫星,每次都获得成功,这使我国成为继美国、前苏联之后,世界上仅有的三个真正掌握返回式卫星研制和发射技术的国家之一。
不仅创造了100%发射成功的历史记录;而且返回式卫星的质量、水平也逐年增高。
随着航天市场商业化的进程加快,从1987年的8月起,我国返回式卫星作为微动试验平台开始步入国际市场,先后承担了法国、德国和瑞典等国家的搭载试验,在国际上产生了越来越重要的影响。
1994年7月3日我国发射的第16颗返回式卫星成效巨大,我国专家在卫星上试验了一种“全姿态捕获新技术”,获得了使卫星在任何姿态下都能恢复正常运行的圆满效果。
更令人难忘的是,1996年10月20日下午3时20分,我国“长征二号丁”运载火箭,从沉寂了两年的酒泉卫星发射中心又托起第17颗返回式卫星成功地送上太空。
卫星按预定轨道在绕地球飞行239圈,旅行15天后。
在西安卫星测控中心的精确控制下,准确地于四川省的蜀中地区“下凡”。
这颗卫星不仅创造了在太空邀游15天的新记录,而且共进行了17类搭载试验,这也是过去从未有过的。
在17类搭载物中,有中国科学院搭载的一个重10千克的多功能生物培养箱,箱中分装着许多实验器,其中还特意放置了一只用于进行心肌观察和失重状态下病理反应实验的不足一个鸡蛋大的小乌龟。
生物箱中另一项实验是细胞学中的神经细胞元生长发育实验,神经元取自一只刚到这个世界的幼鼠的脑细胞。
生物箱中还搭载着两种植物:一种是具有抗癌作用的石雕柏(俗称芦笋);另一种是已长到1~2厘米高的萝卜苗。
这两种植物实验的目的主要是研究其空间的变异机理及微重力下的其它反应。
此外,还利用生物箱进行了水生生物及微生物的实验。
在17类搭载实验中,空间育种虽是一项例行实验,但很引人注目。
因为1978年以来,我国在返回式卫星中相继多次搭载过的水稻、小麦,蔬菜、花卉,中药类计400多个品种的种子,经全国20多个省、市、自治区的70多个单位参与的地面试骏,证明利用太空持殊环境对种子进行处理,再返回地面选育、试种,均取得良好效果,开拓了一条科学育种的新途径。
第17颗返回式卫星还肩负有诸如国土普查、资源探测、地质地震调查、农村水利建设、城市规划和科学试验等多项任务。
不仅试验了新型电子技术,还完成了6项具有可控温场的材料试验,其中,有一项是金属材料在空间加温到摄氏970度后熔化、观察其在微重力下的重新凝固现象,获得了很满意的结果。
在搭载中,还进行了多项材料实验和锂电池的空间试验等。
作为卫星研制单位的中国空间技术研究院也不错过这次机会,利用卫星搭载实验,对高动态GPS自主导航定位系统进行了研究,以及在太空对光盘进行了首次应用试验,硕果累累。
但最激动人心的是在这颗卫星的回收舱里还放有两件最珍贵的物品,一件是中华人民共和国国旗,另一件是香港特别行政区区旗。
中国航天工业总公司在举世瞩目的“九七”香港回归前夕,利用第17颗卫星,实现“五星·紫荆翔太空”,表达了“航天人”对迎接香港回归祖国和祖国统一大业的拳拳之心。
通信广播卫星我国已升空的9颗通信广播卫星中,前7颗都是用“长征三号”火箭从西昌卫星发射中心发射的。
除第一颗“试验卫星一号”和第7颗“实用通信卫星五号”未能进入地球同步转移轨道之外,另一颗试验通信卫星以及“实用通信卫星一号”、“实用通信卫星二号”、“实用通信卫星三号”、“实用通信卫星四号”等5颗卫星都按预定计划依次进入赤道上空的3.6万公里高的地球静止轨道,并分别定点于东经125度、103度、87.5度、110·5度和98度的位置上。
第8颗和第9颗都称之为“东方红三号”的通信卫星,是由“长征三号甲’火箭从西昌发射中心运载升空的。
可惜的是,1994年11月30日发射的第7颗,也就是“东方红三号”通信卫星的首次发射,由于卫星上的姿控发动机有泄漏现象,燃料提早耗尽,致使卫星未能在预定位置定点。
由于以卫星为中继站的现代卫星通信技术通常工作在微波频段,通信容量大,通信方式既不易受电离层、对流层和气象条件的影响,也不受山川、河流、海洋、沙漠等地理条件的限制,卫星通信还具有传输距离远、传输质量高、远距离通信价格便宜和可实现多址连接等优点,所以自我国第一颗人造卫星“东方红一号”发射成功后,我国通信部门就迫切希望自己的试验通信卫星能早日问世,以改变我国通信技术落后的状态,为此,我国早在1970年6月,即开展了对通信卫星及其运载火箭的独立自主研究。
1975年6月后,国家成立卫星通信工程领导小组,并在领导小组之下成立了技术协调组,负责整个工程大总体的技术协调。
经过1976年的大总体方案设计和总体协调,确立了静止轨道试验通信卫星的具体方案。
1977年初,卫星各分系统的方案性样机研制出来后,即向国际电讯联盟提供了有关资料。
同年3月8日,国际电联向全世界正式宣布中国卫星通信工程计划,并相继有日本、印度尼西亚等国家与我国进行了协调。
为了加快工程进展步伐,1977年9月,该工程被列为航天战线三大重点任务之一。
卫星的研制开始出现扬鞭催马的大好势头。
经过广大科技人员的多年辛勤劳动和忘我战斗,至1983年,试验通信卫星的研制工作已临近尾声。
1984年3月28月,我国自行研制的第一颗试验通信卫星运往发射阵地。
4月8日傍晚,夜色开始笼罩大地,只见银白色的运载火箭喷射着桔红色的火龙渐渐从发射架上升,向天际飞去。
19时40分,运载火箭三级准确入轨,卫星与运载火箭分离后,卫星按预定程序起旋至37转/分。
卫星在大椭圆转移轨道上飞行良好。
4月10日8时47分,地面发出遥控指令命令卫星的远地点发动机点火,卫星进入准静止轨道。
4月16日18时27分57秒,卫星成功地定点于东经125度赤道上空。
从此,在茫茫宇宙上空.增添了一颗由中国人研制的一颗新星,即“东方红二号”通信卫星、卫星直径2.1米,总高3·1米,重461公斤;卫星上装有2台转发器,使用C波段开展电话、电视及广播业务。
从此,使我国通信广播卫星的研制及应用进入了一个新的发展阶段。
我国于1984年、1986年、1988年、1990年又成功地发射了5颗静止轨道通信广播卫星。
几年的运行证明,卫星性能符合设计要求,并于1986年开始,利用自己研制的通信卫星,首批开通了北京、拉萨、乌鲁木齐、呼和浩特、广州等城市的卫星通信。
随后,又为中央电视台和中央人民广播电台的多套节目、电视教育和云南、贵州、新疆等省的一些地方电视台节目提供服务,大大提高!了全国的电视覆盖率。
此外,还开通了利用通信卫星作为中继站的对外广播,并为邮电、水利、金融等部门提供了数字、图片、文字传真和数据报表传送等通信手段,使其真正成为提高国民经济建设效益的“倍增器”。
值得一提的是,从理论上讲,虽然在地球同步轨道上的频段卫星轨道位置有120个之多,但就某一个国家而言,真正可利用的位置却十分有限。
我国准备占用和已经占用的位置也仅有东经100度附近的可数的几个。
其中,东经110.5度这一轨道位置,我国与日本已发生过争议,尽管这个位置早已为我国的“东方红二号甲”卫星使用过。
另外,专家们认为,曾为我国第一颗试验通信卫星占用的125度这一位置对我国特别重要,因为定点于这个位置的卫星,其波束覆盖我国全部领土,特别是对我国东南沿海发达地区,更能接收到十分良好的信号。
但按照国际电联的有关规定,我国对东经125度位置的使用权将因我国第一颗试验卫星即将“寿终正寝”于1997年11月份到期,在此之前,如果我国不发射新的通信卫星去占用,将产生两种很不利的结局:要么花巨额外汇去购买或租用一颗非国产卫星去占据这一位置;要么拱手交出,坐视别国去抢占这一位置。
在这种无形的电波之战日趋白热化的关键时刻,我国经过10年呕心沥血研制的“东方红三号”国内通信、广播、电视传输卫星于1997年5月12日用“长征三号甲”运载红箭从西昌卫星发射中心发射升空,准确地定点于东经125度赤道上空,为我国通信事业的发展立下汗马功劳。
“东方红三号”卫星装有24个C频段转发器。
其中6个中功率转发器用于电视传输、18个低功率转发器用于电话、电报、传真、数传等通信业务。
它可连续向全国同时传输6路彩色电视节目和8100路电话,寿命8年,可满足2000年前后全国各地收转电视和广播以及通信的要求。
该卫星为箱形星体结构,由结构、电源、热控、测控、姿态和轨道控制、推进及通信等7个分系统组成。
太阳电池阵为定向帆板结构,翼的最大跨度达18.1米,最大高度为5.71米,全星采用比较先进的模块化的总体构形方案。
所以“东方红三号”的研制成功,标志着我国通信卫星技术已得到飞速发展,为我国挤进竞争激烈的通信卫星市场创造了良好的条件。
气象卫星了解、掌握气象,是人类赖以生存的重要条件之一。
它对人类社会的生产、交通和日常生活的关系都十分密切,并日趋重要。
我国地域广阔,各地气象变化万千,由于交通不便,过去主要靠建在各地的为数有限的地面气象观测站,测出当地的风速、气温、气压、降雨量、日照和温度等气象六要素,然后将这些数据用有线和无线通信手段集中到气象中心(局)进行综合分析,做出预报。
但由于受到海洋、沙漠、高原、高山、海岛的影响,在相当大的国土上无法观测天气情况,每次集中到气象中心的数据有限,集中和分析、处理数据的手段又比较落后,很难及时准确地向全国各地预报台风、暴雨、寒流和高温的来临,往往由于防患措施跟不上而造成不应有的生命财产损失。
自1960年4月1日美国发射世界上第一颗气象卫星后,卫星居高临下,能鸟瞰世界各地,每隔半小时就可以获得一次将近一亿平方公里面积的云图资料,不仅可以昼夜不停地测出和提供大面积的温度、湿度、压力、风力等定量的遥感气象资料,而且这种观测不受自然条件、地理环境和国界、时空的限制。
气象卫星这种用常规气象观测方法不能比拟的优越性显露出来后,我国气象工作者对研制我国自己的气象卫星的呼声日益高涨,并得到党中央的大力支持,正式列入了国家计划。
我国研制的第一颗气象卫星为极地轨道气象卫星,命名为“风云一号”。
主要任务是获取全球气象资料,并向全世界气象卫星地面台站发送气象信息。
同时也获取海洋资料,为海洋部门服务。
“风云一号”卫星本体是1.4米XI.4米XI.2米的六面体。
星体外侧对称安装6块太阳能电池帆板,帆板展开后卫星总长达8.6米。
卫星运行在高度为901公里、倾角99度、周期102分钟的太阳同步轨道上,每天绕地球运行14圈。
卫星结构上的显著特点之一是采用了长寿命的三轴姿态控制系统,使卫星上的两台可见光和红外扫描辐射仪(扫描宽度可达3000公里)能始终对准地球,对地指向精度小于1.0度,星下点分辨率达1.l公里。
1988年9月7日,我国用“长征四号”运载火箭,从山西太原卫星发射中心,成功地将“风云一号”送入预定轨道。
从发回的气象信息看,专家们认为图像清晰,纹理清楚,层次丰富,及时准确。
继第一颗试验性气象卫星发射成功之后,1990年9月3日,我国从太原卫星发射中心,用“长征四号”火箭又成功地发射了一颗气象卫星。
因这颗卫星的结构、轨道和功能,与第一颗卫星基本相近,故称之为“风云一号乙”气象卫星。
当卫星飞临我国上空时,乌鲁木齐气象卫星地面站一马当先,向北京传送了第一幅反映前苏联亚洲地区的卫星云图资料,人们兴奋地从电视天气预报节目中看到不仅有可见光云图,又新添了红外云图,云层、湖泊、河流和山峦清晰可辨,完全可与先进国家的卫星云图相媲美。
继“风云一号”之后,我国于1987年即着手第一颗地球静止轨道气象卫星“风云二号”的研制工作。
作为一颗新型气象卫星,其结构、性能与“风云一号”都有较大差别。
它的外形为直径2.1米、高1.6米的圆柱体,表面粘贴有近2000个太阳能电池片,使用寿命约为3年。
由于该卫星装有多通道扫描辐射计、S波段数传和云图等两个波段的转发器,UHF波段数据收集和天气图广播转发器指标达到国内通道100个,国际通道33个;等效全辐射功率又分为原始主图、展宽云图和天气图等三种情况,功能比较齐全,需要解决一系列工程难题。
1994年初,卫星在测试中发生故障后,作为该项任务的承制单位对卫星诸多方面进行了质量攻关,并通过和各有关单位的密切配合,大力协同,严把质量关,终于使这颗凝聚着我国航天战线全体人员10年心血的新星有了可靠的质量保证。
1997年6月10日,我国利用“长征三号”运载火箭从西昌发射中心顺利地将“风云二号”送上太空地球同步转移轨道,卫星于6月17日最终定位于东经105度离地球赤道3.6万公里的高空。
由于“风云二号”比“风云一号”视野更为广阔,功能更强,用途更广,它投入业务运行后,将为广大用户提供展宽数字图像、天气图传真以及各种经过处理的气象产品,并将在自然灾害监测和气候变化研究中发挥重要作用。
我国继1988年和1990年相继发射两颗太阳同步轨道气象卫星后,1997年又成功地将一颗地球静止轨道气象卫星送上预定轨道,并且已发回清晰云图,可以连续监测天气变化情况,这标志着我国气象卫星研制和发射已步入国际先进水平,从此,我国的气象卫星事业和对卫星资源的应用能力开始进入一个新的发展阶段。
承揽国际商业卫星在改革开放大潮的冲击下,负责我国航天技术发展工作的决策者,于1984年开始考虑中国航天如何走出国门,进入国际市场的问题。
1985年5月,我国以参加日内瓦国际空间商业会议为契机,组成了一个4人代表团出席会议。
当代表团团长在会上向世界航天界的各国代表作了《中国为世界提供发射服务可能性》的报告时,人们的脸上顿时充满惊讶的表情,紧接着就是会场秩序的一阵骚动和互相交头接耳的议论。
第二天,一份法文报纸登出一条问号加惊叹号的消息,标题竟是:“羽毛未丰的中国航天技术要参加国际竞争
”这就是中国航天准备走向世界放出的第一个试探性气球。
为了使国际上更多的厂商能了解中国的航天技术水平,同年6月,中国又参加了在巴黎举行的国际航天技术展览会。
由于经过精心准备,中国航天技术展这次却大显风采,起到了意想不到的轰动效应。
紧接着,1985年10月26日,我国以航天部的名义正式向全世界宣布:“中国运载火箭投放国际市场。
承揽国外卫星发射业务。
”从此,中国航天敞开了数十年紧闭的大门,决定在世界航天市场中占有一席之地。
也许是天公有意作美,当我国向世界宣布要进入国际市场的消息后仅三个月,美国“挑战者号”航天飞机发生爆炸,机毁人亡;不久,美国为了填补因航天飞机停止营业而留下的运载工具空白,赶紧研制的“大力神”和“德尔它”运载火箭也相继失事。
而欧空局的“阿丽亚娜”运载火箭也发射失败。
这时,急不可耐的西方各大卫星公司,开始把眼光投向中国,从而为我国进入世界卫星发射市场创造了一个前所未有的难得机会。
1986年1月,中国同瑞典国家空间公司正式签订协议,用中国的“长征二号丙”火箭为该公司搭载发射一颗邮政卫星。
这是我国与国外最早接触、签署的一份正式发射卫星的协议。
1987年的8、9月间,我国成功地发射并回收了两颗科学探测和技术试验卫星。
在8月份发射的那颗卫星上,搭载了法国马特拉公司的两个微重力实验装置;这是我国首次实现用航天技术向国外用户提供服务,成为中国正式进入国际航天市场的一个标志。
1988年9月,西昌卫星发射中心正式对外开放。
从此,这个深山峡谷的神秘面纱被揭开,旅游者和参观者络绎不绝,接洽卫星发射任务的客户也接踵而至。
1990年4月7日,由中国长城工业总公司承包,我国用“长征二号”运载火箭从西昌卫星发射中心发射了“亚洲一号”卫星,定点于东经105·5度的赤道上空,这颗由美国制造的卫星是当时世界上同类型卫星中使用最广,技术最成熟的一颗中小型卫星,工作寿命9·5年。
“亚洲1号”卫星的发射成功,为我国发射国际商业卫星提供了经验,同时也增添了我们走向国际市场的信心。
为了履行1988年11月1日,中国和美国休斯顿公司使用中国“长征二号E”发射供澳大利亚使用的两颗“HS-601”卫星(简称澳星)的正式合同,1992年8月14日,我国在西昌卫星发射中心成功地用自己研制的大推力火箭,顺利地将这颗重型的“澳赛特BI”通信卫星发射升空。
当闪闪发亮并装饰着美、澳、中三国国旗的乳白色的太空巨龙“长二捆”于14时凌晨7时多一点从发射台上徐徐升起,直冲九重云霄时,为此而奋斗不懈的我国航天战士,如释重负,兴高采烈,相互祝贺。
1994年8月28日,在全世界的注目下,我国又用“长征二号E”将美国休斯公司为澳大利亚研制的“澳赛特B3”通信卫星一举送入太空。
“澳星”的多次发射圆满成功,标志着我国已拥有发射重型卫星的实力,无疑对我国承揽国际商业卫星是一个巨大的推动力。
从1990年4月至1997年6月的10年间,我国分别承揽了10颗国际商业卫星的发射任务。
它们分别是瑞典的“弗利亚科”科学试验卫星,亚洲卫星通信有限公司的“亚洲1号”、“亚洲2号”通信卫星,亚太通信卫星有限公司的“亚太1号”、“亚太1号A”通信卫星,巴基斯坦的“巴达尔1”科学实验卫星,澳大利亚的“澳赛特BI”、“澳赛特BZ”、“澳赛特B3”通信卫星以及美国的“艾科斯达1号”通信卫星。
为了使我国航天技术在世界市场上站稳脚跟,以优质,高效、安全的服务参与世界竞争。
近几年来,我国对各个卫星发射场的设备、设施进行了现代化的更新改造,使发射的实时指挥更趋现代化,数据的采集处理能力明显增强,指挥显示更精确直观,其综合发射能力已成为国际第一流水平。
这充分说明,我国的航天事业正一步一步地走向世界,在激烈竞争的世界卫星发射市场中主宰沉浮的命运,已牢牢掌握在我们自己手中。
参考资料:
973计划是什么
他和863计划有没有关系
973计划19976月4日,原国家科技领导第三次会议决定要制定和实施《重点基础发展规划》,加强国家战略目标导向的基础研究工作,随后由科技部组织实施了国家重点基础研究发展计划,即“973计划”。
实施“973计划”的战略目标是加强原始性创新,在更深的层面和更广泛的领域解决国家经济与社会发展中的重大科学问题,以提高我国自主创新能力和解决重大问题的能力,为国家未来发展提供科学支撑。
实施“973计划”主要任务包括:一是紧紧围绕农业、能源、信息、资源环境、人口与健康、材料等领域国民经济、社会发展和科技自身发展的重大科学问题,开展多学科综合性研究,提供解决问题的理论依据和科学基础。
二是部署相关的、重要的、探索性强的前沿基础研究。
三是培养和造就适应21世纪发展需要的高科学素质、有创新能力的优秀人才。
四是重点建设一批高水平、能承担国家重点科技任务的科学研究基地,并形成若干跨学科的综合科学研究中心。
863计划863计划即国家高技术研究发展计划,是中华人民共和国的一项高技术发展计划。
这个计划是以政府为主导,以一些有限的领域为研究目标的一个基础研究的国家性计划。
由来什么是“863”计划
1986年3月,王大珩、王淦昌、杨嘉墀、陈芳允四位老科学家给中共中央写信,提出要跟踪世界先进水平,发展我国高技术的建议。
这封信得到了同志的高度重视,小平同志亲自批示:此事宜速决断,不可拖延。
经过广泛、全面和极为严格的科学和技术论证后,中共中央、国务院批准了《高技术研究发展计划(863计划)纲要》。
从此,中国的高技术研究发展进入了一个新阶段。
15年来,在党中央和国务院的正确领导下,在有关部门的大力支持下,经过广大科技人员的奋力攻关,863计划取得了重大进展,为我国高技术发展、经济建设和国家安全做出了重要贡献。
863计划是在世界高技术蓬勃发展、国际竞争日趋激烈的关键时期,我国政府组织实施的一项对国家的长远发展具有重要战略意义的国家高技术研究发展计划,在我国科技事业发展中占有极其重要的位置,肩负着发展高科技、实现产业化的重要历史使命。
根据中共中央《高技术研究发展计划(863计划)纲要》精神,863计划从世界高技术发展的趋势和中国的需要与实际可能出发,坚持“有限目标,突出中点”的方针,选择了生物技术、航天技术、信息技术、激光技术、自动化技术、能源技术和新材料7个高技术领域作为我国高技术研究发展的重点(1996年增加了海洋技术领域)。
其总体目标是:集中少部分精干力量,在所选的高技术领域,瞄准世界前沿,缩小与发达国家的差距,带动相关领域科学技术进步,造就一批新一代高水平技术人才,为未来形成高技术产业准备条件,为20世纪末特别是21世纪初我国经济和社会想更高水平发展和国防安全创造条件。
为此,国家每年都要为863计划投入千亿人民币以上的巨资。
863计划主要是由政府主导,同时鼓励企业的参与。
其中国家级的科研机关和各高等院校是科学研究的主导力量,而企业要加入863计划必须通过政府和相关部门的严格筛选,更重要的是企业自身的实力和发展潜力,因此只有极少具有实力的企业才能作为该计划的承担单位。
863计划的实施,不仅使社会建设和人民生活得到了进步提高,也使企业从中得到了发展。
通过对外科技的交流与合作,人才的吸引和培训,产品的开发和销售等多方形式的结合,在政府、企业、社会、经济、发展各方面形成了共同进步的良性循环。
政府一直鼓励企业,要把“科技是第一生产力”作为发展的宗旨。
亨通集团正是充分利用良好的经济、政治环境,抓住机遇,不断充实企业内部力量,加强科技含量,力争在优势领域有所突破,把阶段性成果同其他推广应用计划密切衔接,迅速转化为生产力,提高经济效益,为今后企业技术升级和经济发展创造条件,使自己在未来21世纪更加激烈的竞争中稳步前进。
注:现在进行的S863,又叫“十五”863(shi wu –取汉语拼音第一个字母),指的是在我国“十五计划”期间进行的“863”计划内的各个科研项目。
863官方网站点击进入 .cn方针与宗旨中国根据本身的经济实力,以“有限目标,突出重点”为方针,主要的科学研究集中在生物技术、航天技术、信息技术、激光技术、自动化技术、能源技术和新材料领域。
目标希望在15年内,达到:在几个最重要高技术领域,跟踪国际水平,缩小同国外的差距,并力争在我们有优势的领域有所突破,为本世纪末特别是下世纪初的经济发展和国防安全创造条件; 培养新一代高水平的科技人才; 通过伞型辐射,带动相关方面的科学技术进步; 为下世纪初的经济发展和国防建设奠定比较先进的技术基础,并为高技术本身的发展创造良好的条件; 把阶段性研究成果同其它推广应用计划密切衔接,迅速地转化为生产力,发挥经济效益。
863计划的领域与主题生物技术领域 优质、高产、抗逆的动植物新品种主题 基因工程药物、疫苗和基因治疗主题 蛋白质工程主题 航天技术领域 航天技术研究发展性能先进的大型运载火箭 信息技术领域 智能计算机系统主题 光电子器件和光电子、微电子系统集成技术主题 信息获取与处理技术主题 通信技术主题 激光技术领域 自动化技术领域 计算机集成制造系统主题 智能机器人主题 能源技术领域 燃煤磁流体发电技术主题 先进核反应堆技术主题 新材料领域 高技术新材料和现代科学技术主题 海洋技术领域 海洋探测与监视技术主题 海洋生物技术主题 海洋资源开发技术主题 专项 水稻基因图谱 航空遥感实时传输系统 HJD-04E型大型数字程控交换机关键技术 超导技术 高技术新概念新构思探索增强中国综合国力
长江的古称是什么
长江古江”。
在上古时代,“江”专用名词,特指长江。
有时也称“大江”苏东坡名句“大江东去,浪淘尽,千古风流人物”。
后来人们对长江的认识逐步加深,感到单称“江”或“大江”不能完全表达它源远流长的地理特征,所以又根据它的特点起了个名———“长江”。
“长江”之称始于东汉末年。
晋朝以后,称“长江”者逐渐多了起来。
如李白的诗“孤帆远影碧空尽,惟见长江天际流”。
由于古代科学不发达,交通也不方便,古人很难认识长江的全貌,于是形成了很多的分段别称。
长江正源叫沱沱河。
从沱沱河到青海玉树段叫通天河。
通天河的河床海拔高达三四千米,和长江中下游相比较,真可谓是通天的河流。
通天河流到川藏交界处,便有了金沙江之名(因江中出产沙金)。
金沙江在川滇边界拐了七个大湾,在宜宾附近接纳了岷江,开始称长江。
从四川宜宾到湖北宜昌长1020公里,因流程大部分在川境,故称川江。
川江纳众支流入三峡,水量骤增一倍以上。
由于三峡多悬崖峭壁,故称“峡江”。
长江过宜昌后,江面骤然展宽,进入“极目楚天舒”的两湖平原。
此乃古荆州之地,故称荆江。
“长江万里长,险段在荆江”,指的就是这里。
长江在岳阳、武汉接纳洞庭湖水系和最大的支流汉水后,称九江或浔阳江。
长江在江西接纳鄱阳湖水系后,流经安徽境内段称楚江,因安徽古时属楚国。
江水流入江苏境内,尤其到镇江、扬州附近,为驰名中外的扬子江。
长江流经上海,接纳最后一条支流黄浦江入海,便走完了它6300公里的行程。
卫家雄华林甫
中国遥感事业的成就表现在哪些方面,有什么特点~~
中国遥感技术应用现状 1957年第一颗人造地球卫星升空标志着人类进入了太空时代,从此人类以崭新的角度开始重新认识自己赖以生存的地球。
空间信息技术是本世纪60年代发展起来的一门新兴的科学技术,遥感技术,包括地理信息系统和全球定位系统,则是对地观测的重要手段。
中国的遥感技术从70年代起步,经过十几年的艰苦努力,已发展到目前的实用化和国际化阶段,具体表现在具备了为国民经济建设服务的实用化能力和全方位地开展国际合作使其走向世界的国际化能力。
* 为国民经济可持续发展提供科学的决策依据 中国目前经济发展和人口增长对国家资源环境的影响程度超过了历史上的任何时期。
对国土资源进行动态监测是我国政府一贯重视的问题。
我国国土资源面积大、类型多,遥感技术在国土资源动态监测上具有相当大的优势和潜在的市常如,在1980~1985年期间,我国曾利用陆地卫星MSS数据进行了全国范围的土地资源调查,并按1∶50万比例尺成图,宏观地反映了我国大地资源的基本状况;1984年开始由国家土地局主持开展了全国范围的土地资源详查工作,采用了航片和地面实地测量的方法,对农地采用1∶1万比例尺成图、林地及草地采用1∶5万比例尺成图、在西部地区利用航片与陆地卫星数据结合按1∶10万比例尺成图。
但是由于区域范围大,使项目实施历时长达10年,可见实施全国的土地资源调查迫切需要高空间分辨率的卫星遥感图像。
据估计覆盖我国整个国土面积需要600景TM图像,而斯波特图像则需要6000多景, 可见遥感技术在我国具有相当大的市场,因而尽快发射我国自己的资源卫星是摆在我们面前的十分迫切的任务。
“八五”期间中国科学院和农业部“国家资源环境遥感宏观调查与动态研究”小组在1992~1995年的3年时间里完成了全国资源环境调查,建立了一个完整的资源环境数据库,较过去开展一项单项专题的全国资源环境调查需5~10年的时间是一个很大进步。
在项目实施中全部采用了90年代接收的最新陆地卫星TM图像作为主要的信息源,同时也使用了我国近年内发射的多颗返回式资源调查卫星的高分辨率图像,在大兴安岭、秦岭、横断山脉一线以东选用1∶25万比例尺,此线以西采用1∶50万比例尺进行遥感图像判读、制图及数据库建立工作。
为此,须完成全国陆地部分国际标准分幅地图近500幅幅面的调查、制图与数据分析工作。
除全国范围的国土资源调查外,各主要省市,如北京、天津、浙江、陕西、内蒙等许多省市自治区也开展了国土资源调查工作。
除此以外,80年代后期的“三北”防护林带综合遥感调查和“黄土高原水土流失遥感调查”以及“遥感技术在西藏自治区土地利用现状调查中的应用”等项目都是比较重大的遥感工程。
但是,从国民经济建设的需要来看,类似于全国土地资源调查等大型工程项目应该增加动态监测的能力,如在我国东部地区应该每年调查一次,西部地区每5年一次。
可见,我们面临的任务是十分艰巨的, 遥感应用的市场是非常广泛的。
* 具有对重大自然灾害灾情进行动态监测和评估的能力 中国是自然灾害频繁且严重的国家,每年因灾害所造成的损失高达上千亿元人民币。
对重大灾害进行动态监测和灾情评估,减轻自然灾害所造成的损失是遥感技术应用的重要领域。
我国在“八五”期间建立了重大自然灾害(洪水、林火、干旱、地震、雪灾等)遥感监测评估系统。
针对洪涝灾害采用了包括陆地卫星、气象卫星和具有全天候观测能力和应急反应能力的机载合成孔径雷达遥感等多高度的立体监测手段,不仅具有监测的宏观性、动态观测能力,而且通过机-星-地实时传输系统能够实时地将灾情图像及时地传送到中央指挥部门。
自1987年以来,我国先后在永定河、黄河、长江、淮河等地区开展了大规模的防汛遥感综合试验。
尤其是1994年在福建闽江、广东的西江和北江,1995年在鄱阳湖、洞庭湖和辽河的洪水监测评估工作中,已分别将洪水灾害的初评估与精评估的时间压缩至2天和2周。
整个技术方法与流程已达到实用化水平。
如在1991年太湖流域洪涝灾害遥感监测中,采用了多个时相的诺阿卫星影像、陆地卫星TM影像和侧视雷达图像,通过多时相的遥感信息复合得到了准确的灾情数据。
1987年5月发生在我国东北大兴安岭的特大森林火灾, 第一个发现火灾的是诺阿气象卫星图像。
在火灾发生期间连续接收了过境的气象卫星和陆地卫星图像,每天提供火区范围、火势变化、火头位置移动、新火点出现以及扑火措施效果等方面的信息。
火灾后的1988 年和1989年利用陆地卫星TM图像还进行了火烧迹地恢复的遥感调查,实现了森林火灾早期预警、灾中的动态监测、灾后损失评估以及后期的生态恢复调查的遥感动态观测,得到了国家领导人很高的评价。
此外,我们还利用气象卫星遥感数据与地面气象数据相结合的方法,在黄淮海平原建立了旱情遥感动态监测评估系统,为农业管理、合理灌溉等提供了决策依据。
总之,中国的自然灾害之多、危害之大是惊人的,应用遥感技术进行减灾的效果是显著的,同时应用的潜力也是巨大的。
* 利用遥感技术进行农作物估产和林业资源调查 我国是农业大国,粮食问题是我国政府非常重视的问题。
早在80年代中期,在国家经委的支持下,以中国气象局为主组织开展了北方10省市冬小麦估产试验。
这标志着气象卫星非气象领域工程化应用的开始,也是我国首次开展大规模遥感估产工作。
目前利用气象卫星进行农作物估产的应用已得到了普及和深化,并形成了一种业务化的手段,估产对象也从冬小麦扩展到玉米、水稻等其他作物。
“八五”期间我国建立了主要产粮区主要农作物(小麦、水稻、玉米)估产信息系统。
其中大面积冬小麦遥感估产运行系统是遥感技术和地理信息系统技术相结合的产物,它将整个遥感估产的各个作业环节纳入计算机系统运行,使其整体具有数字化作业能力,并能输出各种估产结果。
1992~1995年近3年在黄淮海地区进行冬小麦遥感估产试验的结果表明,利用遥感技术对大面积农作物估产的精度能够达到95%以上,无论是大区域还是分省(区)估算,均能达到规定的精度指标。
随着系统运行年限的累积,估产精度将会逐渐提高,运行费用也会逐年减少。
同时针对国家急需了解农业种植结构变化和进行种植面积测算、长势监测和单产模型建立等的要求,对我国主要农作物进行了遥感估产,在地理信息系统技术的支持下,构成了农作物估产的实用运行系统。
此外,其他农作物如水稻、玉米等也都分别在江南的太湖平原和东北的三江平原建立了估产信息系统,并取得了很好的效果。
1995年国家遥感中心组织力量完成了《中国农业状况图集》,采用图表相结合的方式,形象直观地反映了我国农业发展的综合水平,以及粮食、棉花、油料等方面的状况及变化,揭示了农业发展中面临的耕地减少等问题,为中央和地方政府进行宏观决策提供了科学依据。
该项工作受到了中央领导同志的肯定。
* 地质矿产资源遥感调查 中国的矿产资源丰富,遥感技术的应用前景十分广阔,遥感技术在区域地质填图方面的应用已比较成熟,并取得了很好的效果。
如在内蒙古、山东、江西、四川等省区开展的32 项1∶5万图幅的地质填图工作中,采用遥感技术不仅提高了工作效率和填图的质量,而且节省了填图的费用,每幅图的实际费用仅占常规方法所需费用的三分之二;在承德地区采用 TM图像进行1∶25万比例尺的区域地质填图工作中, 除建立的遥感地层单元符合1∶25 万区域地质填图单元技术要求外, 在地质构造和矿产研究方面也有更多的发现,并且大大地缩短了周期、节省了经费。
这必将为我国在本世纪内实施并完成200万平方公里1∶5万区域地质填图和全国范围的l∶25万区域地质填图项目起到重要作用。
在地质矿产资源调查方面,遥感技术在我国已经从间接探测发展到了直接探测阶段,如在新疆准葛尔利用细分红外和多光谱扫描技术直接探测到了岩金矿的蚀变带,取得了利用遥感技术直接寻找金矿的重大进展。
我国还利用短波红外成像光谱扫描仪在新疆进行了石油天然气资源的遥感直接探测试验。
利用该遥感图像数据通过信息增强和提取,捕捉到了油气藏在地表的微渗漏所造成的烃异常,进而达到直接探测的目的。
该项目在新疆塔里木盆地的多次生产试验中得到了证实。
这些技术的成功应用为加快我国西部的开发发挥了积极的作用。
此外,近年来发展起来的干涉测量雷达技术已经在三峡大坝等大型工程的环境监测和油气区地面沉降等应用领域显示出巨大的应用潜力。
中国遥感技术应用展望 “九五”期间,中国国家科委已经把“遥感、地理信息系统及全球定位系统技术综合应用研究”列为“九五”国家科技攻关重中之重项目,至此遥感信息技术已连续四个五年计划被列入国家优先项目,说明了国家对遥感事业的重视。
可以预见,该项目的实施,可以有效地将这一高新技术广泛地应用于国民经济建设的各个方面,使其走上产业化发展的道路。
* 推动业务性遥感信息综合服务体系的形成 “九五”期间遥感科技攻关的重点是在以农业资源为主体的资源与环境动态信息服务方面。
届时将建立一个国家级的宏观信息服务体系,同时使对水旱灾害为主的遥感监测与评估系统走向业务化运行。
(1)国家级基本资源与环境遥感动态信息服务体系的建立 我们将针对全国范围内的基本土地资源与生态环境状况,建立空间型信息系统,形成每年动态更新一次的能力,并在此基础上向国家高层次部门提供以国家农业土地资源、城市化发展及其动态变化为主的数字图件,其中包括1∶25万全国分及分重点区域的土地资源及其生态环境背景图件和数据;重点开发地带和大城市周边地区的1∶10万图件和相应的数据库;每年一次1∶25万比例尺的中国东部耕地与城镇动态变化图件和数据库;较为完整的全国基本土地资源和生态环境背景数据库;对国家资源热点问题,如耕地动态变化、城市化等每年提供一次专题报告等。
按计划,1999年以前我们将建立网络型国家级信息服务体系,提供相应的资源环境信息及辅助决策信息,保证系统连续稳定地运行。
(2)重大自然灾害监测与评估运行系统的完善 以水旱灾害监测与评估为重点的运行性综合监测与评估业务系统将于1999年建成并投入相关业务部门使用,使之具备定期发布全国旱情、随时监测评估洪涝灾害和重大自然灾害的应急反应能力。
该系统具有以下功能:对突发性水灾,在系统进入状态后2天内提供受淹范围、各类土地面积等信息, 一周之内提供包括受灾人口、受淹房屋等信息的详细报告;对重点地区,实施每天一报淹没地区及面积的信息服务;在危机时刻,提供实时灾害现场图像显示和注记;从1998年开始,每10天报一次全国的旱情数据,成灾地区对农田干旱状况每5 天上报一次灾情数据;对重大森林火灾和地震等自然灾害进行监测并及时提供相关信息,从而最大限度地减轻自然灾害所造成的损失。
* 继续赶超世界遥感科技前沿 在“九五”期间按照863计划将加大向对地观测系统建设的倾斜力度,除继续强化支持星载合成孔径雷达样机的研制外,还要研制开发先进机载对地观测系统。
目前海洋监测已经列入了863计划,海洋资源的遥感监测已经得到了我国政府的高度重视,它是对地观测的重要组成部分。
我们将发展预警海洋灾害、监测海洋环境所急需的高技术,为建立我国海洋立体监测系统提供技术支撑,提高海洋可持续发展的环境保障能力,加速与全球海洋观测系统的接轨,力争本世纪末在海洋自动观测系统、水声遥测和海洋遥感技术应用的主要方面达到90年代中期的国际先进水平。
“九五”期间我国还将支持如下四个方面的新技术研究:以高光谱分辨率遥感为主的高分辨率遥感信息对水稻的识别,小块种植面积的测定以及农作物长势监测技术研究;雷达遥感新技术在有云天气条件下对水稻和棉花的识别以及农业土地面积测算技术研究;新型遥感技术大数据量信息的快速处理、分析以及提取技术研究;以新型遥感信息为基础的遥感和地理信息系统的融合处理技术以及基于遥感信息提取的地理信息系统快速生成、更新技术研究



