欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 小学数学括号听课心得体会

小学数学括号听课心得体会

时间:2013-05-08 14:23

我感觉我很笨 今天数学老师让我们把一个算式舔括号 我没有听课 老师检查我的时候就骂我 然后让我舔到

小学数学“少讲多练”的教学随笔、阶段性总结一学期即将过去,可以说紧张忙碌而收获多多.总体看,全体数学教师认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,在继续推进我校“自主——创新”课堂教学模式的同时,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学,收到很好的效果. 一、课程标准走进教师的心,进入课堂 我们怎样教数学,《国家数学课程标准》对数学的教学内容,教学方式,教学评估教育价值观等多方面都提出了许多新的要求.无疑我们每位数学教师身置其中去迎接这种挑战,是我们每位教师必须重新思考的问题.开学初组织攻关教师和教研组长参加处组织的新课程标准及新教材培训学习,并参加处研究性学习培训.在各年级组织认真学习的基础上全体数学教师集中由黄丽娜陈艳红两位教师二次分学段培训,鲜明的理念,全新的框架,明晰的目标,有效的学习对新课程标准的基本理念,设计思路,课程目标,内容标准及课程实施建议有更深的了解,本学期各年级在新课程标准的指导教育教学改革跃上了一个新的台阶. 二、课堂教学,师生之间学生之间交往互动,共同发展. 本学期我们每位数学教师都是课堂教学的实践者,为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程,组织了第六届同组共研一课活动,在教研组长的带领下,紧扣新课程标准,和我校“自主——创新”的教学模式.在有限的时间吃透教材,分工撰写教案,以组讨论定搞,每个人根据本班学生情况说课、主讲、自评;积极利用各种教学资源,创造性地使用教材公开轮讲,反复听评,从研、讲、听、评中推敲完善出精彩的案例.五年级教研组《循环小数》一课成功的展示,收到良好的效果得到领导和老师的肯定.实践表明,这种分合协作的备课方式,既照顾到各班实际情况,又有利于教师之间的优势互补,从而整体提高备课水平,课前精心备课,撰写教案,实施以后趁记忆犹新,回顾、反思写下自己执教时的切身体会或疏漏,记下学生学习中的闪光点或困惑,是教师最宝贵的第一手资料,教学经验的积累和教训的吸取,对今后改进课堂教学和提高教师的教学水评是十分有用.近三年的改革收获?多,课前准备不流于形式,变成一种实实在在的研究,教师的群体智慧得到充分发挥,课后的反思为以后的教学积累了许多有益的经验与启示,十一月中旬我们举办了为期一周第六届 教学节,七位教师分别代表各组讲了课,三节评为优质课,这次公开教学,呈现开放性,突破原有学科教学的封闭状态,把学生置于一种开放、主动、多元的学习环境和学习态势中.六年纪《圆的周长》的设计给学生提供自主探索的契机,学生通过量、饶、滚找出周长和直径的倍数关系,用计数器把测量的周长和直径的倍数关系算出,填写报告单,观察数据发现倍数关系,由“是——也是——还是——总是”最后概括为圆的周长总是直径的三倍多一些.”较强的数学思想方法得于渗透.学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,周长公式的形成、获得、应用了然于心.提倡自主性“学生是教学活动的主体,教师成为教学活动的组织者、指导者、与参与者.”这一观念的确立,灌输的市场就大大削弱.四年纪 《乘法的简算》一组连乘计算题计算,学生发现了交换因数的位置,积不变的规律,然后观察数字特征,变序、加括号达到简算.设计无论是问题的提出,还是已有数据处理、数学结论的获得等环节,都体现学生自主探索、研究.突出过程性,注重学习结果,更注重学习过程以及学生在学习过程中的感受和体验.五年纪《相遇应用题》以研究两个物体的运动情况,老师导演,学生表演,设计了从“相距——缩短——交叉——相背”两物体之间的距离变化情况,感受相向运动中,随着时间的推移,路程逐渐缩短的规律.得出两物体相向运动中的速度、时间和路程之间的数量关系.一段小小的表演,犹如吃了一盆八宝菜,各种营养成分都有了.使学生的智慧、能力、情感、信念水乳交融,心度受到震撼,心理得到满足,学生成了学习的主人,学习成了他们的需求,学中有发现,学中有乐趣,学中有收获,这说明:设计学生主动探究的过程是探究性学习的新的空间、载体和途径. 综合起来看这次教学活动兼顾到知识教育与人文教育的和谐统一,而这些都并非是一朝一夕就能完完成的.需要每一位教师不断学习、不断修炼,提高文化水平与做人境界,这将是一个长期而非常有价值的努力过程.研讨 反思 将公开课上的精华延伸运用于日常教学实践 李巧莲老师以《千米的认识》的教学获市教学能手; 在11月30日进行的处第5批“推门好课”教师的复查验收中,梁爱英 黄丽娜 王桂荣三位教师的《乘法的简》课被评为特优课;阳泉市陶行知研讨会作课《乘法的简》受到与会的教师好评.12月22日山西省示范小学验收时王桂荣的《认识一位小数》受到验收老师和领导的好评.12月中旬,4位教师参加了山西省《教与爱》名师授徒研修部的学习培训,聆听名师杨少波的专题讲座,观摩其示范教学,领悟名师的高尚师德,探究名师精湛的课堂教艺,并在全校公开教学,受到名师认可和听课教师的一致好评.一月十二日王桂荣赴盂县作课,作为一个契机,我们在总结成绩的同时,不断反思教学,以科研促课改,以创新求发展,不断地将公开课上的精华延伸运用于日常教学实践,把仍在困惑这我们的许多问题,有个在认识.努力处理好数学教学与现实生活的联系,努力处理好应用意识与解决问题的重要性,重视培养学生应用数学的意识和能力.重视培养学生的探究意识和创新能力. 常思考,常研究,常总结,以科研促课改,以创新求发展, 进一步转变教育观念,坚持“以人为本,促进学生全面发展,打好基础,培养学生创新能力”,以“自主——创新”课堂教学模式的研究与运用为重点,努力实现教学高质量,课堂高效率. 三、创新评价,激励促进学生全面发展. 我们把评价作为全面考察学生的学习状况,激励学生的学习热情,促进学生全面发展的手段,也作为教师反思和改进教学的有力手段. 对学生的学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展.抓基础知识的掌握,抓课堂作业的堂堂清,采用定性与定量相结合,定量采用等级制,定性采用评语的形式,更多地关注学生已经掌握了什么,获得了那些进步,具备了什么能力.使评价结果有利于树立学生学习数学的自信心,提高学生学习数学的兴趣,促进学生的发展.引一个三年级评语例子:“这几天我们学习了较大的长度单位《千米的认识》,石晨杰通过自己的努力,能收集、记录较远的路程,知道如何推测、估计较远的距离,在这方面是班里最好的.但在语言表达方面有一定的困难,希继续努力.等级评定,优.”这个以定性为主的评语,是学生与老师的一次情感交流,学生获得了成功的体验,树立了学好数学的自信心,也知道了哪些方面应该继续努力. 本学期我们在作业评价方面做了一些尝试,做法是日评、周评、月评一条龙,老师评、学生评、小组评,、家长评一条龙,老师对一日作业做出评价,学生自查后对评价结果登记在作业情况扉页栏中,周五下午学生以小组评定等级后带回家,有时把班里同学好的作业带回家,双休日家长对孩子一周的学习、作业进行评价、了解、对比后对孩子的学习提出要求,周始老师综合激励换星,(2个优A换1枚章)学生每周都为自己树立一个新的学习目标,这个目标又转化为每天的学习行为,使他们日复一日,周复一周,不断地吸取经验,经常进行弥补,月末进行争星活动,学生在一个月内品尝自己学习成功的喜悦,或向他人学习,每一个月是一个新起点,学生都站在同一个起跑线上.将学生的学习距离缩短,(9、10、11、12、1)五星级作业评定,极大限度地调动了学生的学习积极性, 既看到学习的进步,又有了学习的动力,并树立起学习的目标,较好地发挥了评价的激励作用. 四、抓实常规,保证教育教学任务全面完成. 坚持以教学为中心,强化管理,进一步规范教学行为,并力求常规与创新的有机结合,促进教师严谨、扎实、高效、科学的良好教风及学生严肃、勤奋、求真、善问的良好学风的形成.五环节的考评主要形式有以下四个: 1、自检——管理上,努力体现以人为本的思想. 要求每位教师对照有关制度,检查自己所有的职业表现是否规范、得体. 2、互观——由组长牵头,组员间互观交流,取长补短,加强随机教研. 3、校查——A随机查:管理人员进课堂(通知听课、推门听课、跟踪听课),听课、看教案、查作业、查学生学习习惯、态度、效果等一条龙式的检查.B集中查:每月对不同年级、不同常规项目集中抽查. 坚持每月一次的大教研组活动,矫正疏漏,抛砖引玉,反馈考核情况,并将常规五环节量化在校园网,增大考核透明度,把常规工作抓严、抓细、抓实,促进教学管理的良性循环. 全体数学教师从点滴入手,了解学生的认知水平,查找资料,精心备课,努力创设宽松愉悦的学习氛围,激发兴趣,教给了学生知识,更教会了他们求知、合作、竞争,培养了学生正确的学习态度,良好的学习习惯及方法,使学生学得有趣,学得实在,确有所得,向40分钟要效益;分层设计内容丰富的课外作业,教法切磋,学情分析,“一得”交流都是大家随机教研的话题,新老教师互学互促,扎扎实实做好常规工作,做好教学的每一件事,切实抓好单元过关及期中质量检测,班里抓单元验收的段段清,并跟踪五名好差生进行调查.为了使新课程标准落实进一步落实,引到老师走进新课程,抛砖引玉,对新课程标准的教学内容、教学方式、教学评估、及教育价值观等多方面体现,分了分数与代数、空间与图形、实践与综合、统计与概率四个领域来命题,强调学生的数学活动,发展学生的数感、空间观念以及应用意识与推理能力,优化笔试题目的设计,设计知识技能形成过程的试题,设计开发性试题,设计生活化的数学试题,在11月12日进行了期中质量检测,全校学生全都参加,及格率为97%,优秀率为78%.真正将考试作为促进学生全面发展、促进教师提高改进教学的手段,并对本班前后5名学生跟踪调研,细致分析卷面,分析每位学生的情况,找准今后教学的切入点,查漏补缺,培优辅差,立足课堂,夯实双基. 与此同时,我们统筹安排学生在校一日活动,课外兴趣活动有组织、有计划,时间、内容、老师、场地均得到落实,各兴趣活动期中组织汇报表示,12月底结合迎新组织展示.学生在多样的兴趣活动中不仅巩固、运用了所学的知识,也为今后构建新的知识结构,提高实践、应用能力,具备创新精神打下了基础,真正做到第一课堂打基础,第二课堂发展特长. 一份耕耘,一份收获.教学工作苦乐相伴.我们将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好.

份初中数学听课评课记录:一元一次不等式解法

今天听了 老师的课,内容是《一元一次不等式解法》第1课时,课题选自人教版《义务教育课程标准实验教科书·数学(七年级下册)》.看到了 老师的精彩的教学展示,学到了很多东西。

下面从教学方式与手段的选择及教学过程的设计几方面来阐述我对本节课的感受。

本节课重点讨论了两方面内容:1、如何用一元一次不等式解决实际问题,归纳其基本过程;2、如何解不等式,归纳解一元一次不等式的一般步骤。

从而使学生体会到不等式是解决涉及求未知数取值范围的有力工具,是刻画现实世界中不等关系的一种有效数学模型,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础。

在实现目标方面做得非常出色。

既完成了任务又发展了学生的能力。

在重点和难点的处理上 以不等式为工具,分析问题、解决问题是本章的重点,掌握一元一次不等式的解法及解集的几何表示是本章的基本技能,因此,本节课的教学重点为:由实际问题中的不等关系列出不等式,进一步掌握一元一次不等式的解法。

由于学生初次接触含有不等关系的实际问题,因此对于如何分析出其中的不等关系,并应用一元一次不等式描述不等关系,从而解决实际问题。

教学方式和手段本节课采用的教学方式是启发式教学方式。

从学生已有的生活实际经验出发,通过设置若干个具有层次性、挑战性的探究点,激发学生探究兴趣,教师引导学生在独立思考、互相交流的活动中主动学习、探究学习,并适时恰当地引导、帮助学生找到解决问题的方法。

教学中利用幻灯片,一方面创设强烈的生活气息,激发学生学习兴趣;另一方面扩大课堂教学容量,节省课堂教学时间,提高课堂教学效率。

教学中,首先让学生独立思考,然后组织学生分组讨论,交流解决问题的过程,教师深入小组参与活动,适时予以指导。

使学生通过具体的练习,然后经历一元一次不等式与一元一次方程的解法的类比、对比过程,进一步掌握一元一次不等式的解法及解集的几何表示,规范解题步骤,养成按步骤操作的解题习惯,夯实双基,同时发展学生运用类比、化归等数学思想的意识,从而进一步完善已有的知识体系在整个过程中 老师充分注重学生的个性发展和合作能力的培养从而在学生终身学习的能力培养上打下了良好的基础。

小学数学评课稿该怎样写呢

没听说过,应该用集合符号{1}表示只取一个值。

比如说,取值范围为: x=0或1≤x<2或x=3或x=10或x=100那就应该写成:{0}U[1,2)U{3,10,100}至于[1,1]那就跟4\\\/1一样。

它是有意义的,但没人这么写。

高一必修一数学学习笔记, 和 总结。

第一章 集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ① 任何一个集合是它本身的子集。

AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x  xS且 xA} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。

通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。

) 2. 构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。

提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 5.什么叫做映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。

记作“f:A B” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象 说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

6. 常用的函数表示法及各自的优点: ○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2 解析法:必须注明函数的定义域;○3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。

列表法:便于查出函数值。

图象法:便于量出函数值 补充一:分段函数 (参见课本P24-25) 在定义域的不同部分上有不同的解析表达式的函数。

在不同的范围里求函数值时必须把自变量代入相应的表达式。

分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数 如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。

例如: y=2sinX y=2cos(X2+1) 7.函数单调性 (1).增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

区间D称为y=f(x)的单调增区间 (睇清楚课本单调区间的概念) 如果对于区间D上的任意两个自变量的值x1,x2,当x1

(2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是的. (3).函数单调区间与单调性的判定方法 (A) 定义法: ○1 任取x1,x2∈D,且x1

8.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称). (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 总结:利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2 确定f(-x)与f(x)的关系;○3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)\\\/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 10.函数最大(小)值(定义见课本p36页) ○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand). 当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。

注意:当 是奇数时, ,当 是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (1) • ; (2) ; (3) . (二)指数函数及其性质 1、指数函数的概念:一般地,函数 叫做指数函数(exponential function),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 0

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片