
系统辨识与建模 辨识方法有哪些
主要内容包括:线性系统的辨识,多变量线性系统的辨识,线性系统的非参数表示和辨识,非线性系统的辨识,时间序列建模,房室模型(多用于医学、生物工程中)的辨识,神经网络模型的辨识,模糊系统的建模与辨识,遗传算法及其在辨识中的应用,辨识的实施等。
各种方法都给出具体的计算步骤或框图,并结合实例或仿真例子给予说明,尽量使读者易学会用。
本书为天津市高校“十五”规划教材,可作为高等学校自动化、系统工程、经济管理、应用数学等专业的高年级本科生和研究生的教材或参考书,也可作为有关科技工作者、工程技术和管理人员的参考书。
图书目录第1章引论(1)1.1建模与系统辨识概述1.1.1系统辨识研究的对象1.1.2系统辨识1.1.3系统辨识的目的1.1.4辨识中的先验知识1.1.5先验知识的获得1.1.6系统辨识的基本步骤1.2数学模型1.2.1概述1.2.2线性系统的4种数学模型1.3本书的指导思想和布局第2章线性静态模型的辨识(12)2.1问题的提出2.2最小二乘法(ls)2.2.1最小二乘估计2.2.2最小二乘估计的性质2.2.3逐步回归方法2.3病态方程的求解方法2.3.1病态对参数估计的影响2.3.2条件数2.3.3病态方程的求解方法2.4模型参数的最大似然估计(ml)2.4.1最大似然准则2.4.2最大似然估计243松弛算法习题第3章离散线性动态模型的最小二乘估计(27)3.1问题的提法及一次完成最小二乘估计3.2最小二乘估计的递推算法(rls)3.2.1递推最小二乘法3.2.2初始值的选择3.2.3计算步骤及举例3.3时变系统的实时算法3.3.1渐消记忆(指数窗)的递推算法3.3.2限定记忆(固定窗)的递推算法3.3.3变遗忘因子的实时算法3.4递推平方根算法3.5最大似然估计(ml)习题第4章相关(有色)噪声情形的辨识算法(42)4.1辅助变量法4.2增广最小二乘法(els)4.2.1增广最小二乘法4.2.2改进的增广最小二乘法4.3最大似然法(ml)44闭环系统的辨识4.4.1问题的提出4.4.2可辨识性443闭环条件下的最小二乘估计习题第5章模型阶的辨识5.1单变量线性系统阶的辨识5.1.1损失函数检验法5.1.2f检验法5.1.3赤池信息准则(aic准则)5.2阶与参数同时辨识的递推算法5.2.1辨识阶次的基本思想和方法5.2.2阶的递推辨识算法5.2.3几点说明5.3仿真研究5.3.1辨识方法的仿真研究5.3.2对模型适用性的仿真研究5.3.3控制系统设计中的计算机仿真研究习题*第6章多变量线性系统的辨识6.1不变量、适宜选择路线及规范形6.1.1代数等价系统6.1.2适宜选择路线与不变量6.1.3适宜选择路线与规范形6.2输入\\\/输出方程6.2.1输入\\\/输出方程一般形式6.2.2pcf规范形对应的输入\\\/输出方程6.3pcf规范形的辨识6.3.1结构确定及参数辨识6.3.2*和*的实现算法习题第7章线性系统的非参数表示和辨识7.1线性系统的非参数表示7.1.1脉冲响应函数7.1.2markov参数(hankel模型)7.2估计脉冲响应函数的相关方法7.2.1相关方法的基本原理7.2.2伪随机二位式信号(m序列)7.2.3用m序列做输入信号时脉冲响应函数的估计7.2.4估计h(t)的具体步骤与实施习题第8章非线性系统辨识8.1引言8.2单纯形搜索法8.2.1问题的提法8.2.2单纯形搜索法8.3迭代算法的基本原理8.3.1迭代算法的一般步骤8.3.2可接受方向8.4牛顿—拉夫森算法8.5麦夸特方法*8.6数据处理的分组方法
用到系统辨识法数学建模问题
1)建模准备数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。
“什么是问题
问题就是事物的矛盾,哪里有没解决的矛盾,哪里就有问题”。
因此发现课题的过程就是分析矛盾的过程贯穿生产和科技中的根本矛盾是认识和实践的矛盾,我们分析这些矛盾,从中发现尚未解决的矛盾,就是找到了需要解决的实际问题,如果这些实际问题需要给出定量的分析和解答,那么就可以把这些实际问题确立为数学建模的课题,建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对。
(2)建模假设作为课题的原型都是复杂的、具体的,是质和量、现象和本质、偶然和必然的统一体,这样的原型,如果不经过抽象和简化,人们对其认识是困难的,也无法准确把握它的本质属性。
建模假设就是根据实际对象的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。
对原型的抽象、简化不是无条件的,一定要善于辨别问题的主要方面和次要方面,果断地抓住主要因素,抛弃次要因素,尽量将问题均匀化、线性化,并且要按照假设的合理性原则进行,假设合理性原则有以下几点:①目的性原则:从原型中抽象出与建模目的有关的因素,简化掉那些与建模目的无关的或关系不大的因素。
②简明性原则:所给出的假设条件要简单、准确,有利于构造模型。
③真实性原则:假设条件要符合情理,简化带来的误差应满足实际问题所能允许的误差范围。
④全面性原则:在对事物原型本身作出假设的同时,还要给出原型所处的环境条件。
(3)模型建立在建模假设的基础上,进一步分析建模假设的各条件首先区分哪些是常量,哪些是变量,哪些是已知量,哪些是未知量;然后查明各种量所处的地位、作用和它们之间的关系,建立各个量之间的等式或不等式关系,列出表格、画出图形或确定其他数学结构,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻画实际问题的数学模型。
在构造模型时究竟采用什么数学工具,要根据问题的特征、建模的目的要求以及建模者的数学特长而定 可以这样讲,数学的任一分支在构造模型时都可能用到,而同一实际问题也可以构造出不同的数学模型,一般地讲,在能够达到预期目的的前提下,所用的数学工具越简单越好。
在构造模型时究竟采用什么方法构造模型,要根据实际问题的性质和建模假设所给出的建模信息而定,就以系统论中提出的机理分析法和系统辨识法来说,它们是构造数学模型的两种基本方法。
机理分析法是在对事物内在机理分析的基础上,利用建模假设所给出的建模信息或前提条件来构造模型;系统辨识法是对系统内在机理一无所知的情况下利用建模假设或实际对系统的测试数据所给出的事物系统的输入、输出信息来构造模型。
随着计算机科学的发展,计算机模拟有力地促进了数学建模的发展,也成为一种构造模型的基本方法,这些构模方法各有其优点和缺点,在构造模型时,可以同时采用,以取长补短,达到建模的目的。
(4)模型求解构造数学模型之后,再根据已知条件和数据分析模型的特征和结构特点,设计或选择求解模型的数学方法和算法,这其中包括解方程、画图形、证明定理、逻辑运算以及稳定性讨论,特别是编写计算机程序或运用与算法相适应的软件包,并借助计算机完成对模型的求解。
(5)模型分析根据建模的目的要求,对模型求解的数字结果,或进行变量之间的依赖关系分析,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等。
通过分析,如果不符合要求,就修改或增减建模假设条件,重新建模,直到符合要求;通过分析如果符合要求,还可以对模型进行评价、预测、优化等。
(6)模型检验模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,用实际现象、数据等检验模型的合理性和适用性,看它是否符合客观实际,若不符合,就修改或增减假设条件,重新建模,循环往复,不断完善,直到获得满意结果 目前计算机技术已为我们进行模型分析、模型检验提供了先进的手段,充分利用这一手段,可以节约大量的时间、人力和物力。
(7)模型应用模型应用是数学建模的宗旨,也是对模型的最客观、最公正的检验 因此,一个成功的数学模型,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用。
以上介绍的数学建模基本步骤应该根据具体问题灵活掌握,或交叉进行,或平行进行,不拘一格地进行数学建模则有利于建模者发挥自己的才能。
关于软件有matlab lindo 等
系统辨识的检验
系统地介绍系统辨识和参数估计的基本原理、方法和应用。
全书共分为10章,内容包括:绪论、传递函数的辨识、辨识的输入信号、相关辨识法、辨识的最小二乘法、极大似然法及其他辨识算法、系统阶次的辨识、闭环系统辨识、时间序列的建模分析基础以及系统辨识的应用。
书中包含很多工程应用实例、Matlab实例、例题和习题。
系统辨识是研究确定系统数学模型的一种理论和方法,它和状态估计、控制理论构成现代控制论三个互相渗透的领域。



