
上虚拟现实技术的课有何感想
好玩,有成就感
研究虚拟现实技术的现实意义?
虚拟现实(Virtual Reality,简称VR;又译作灵境、幻真)是近年来出现的高新技术。
VR是一 项综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计 算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者通过适当装置,自然地对虚拟世 界进行体验和交互作用。
VR主要有三方面的含义:第一,虚拟现实是借助于计算机生成逼真 的实体,“实体”是对于人的感觉(视、听、触、嗅)而言的;第二,用户可以通过人的自然 技能与这个环境交互,自然技能是指人的头部转动、眼动、手势等其他人体的动作;第三, 虚拟现实往往要借助于一些三维设备和传感设备来完成交互操作。
近年来,VR已逐渐从实验 室的研究项目走向实际应用。
目前在军事、航天、建筑设计、旅游、医疗和文化娱乐及教育 方面得到不少应用。
在国内,有关VR的项目已经列入计划,VR的研究和应用正在全面展开。
“虚拟现实技术”对全球大多数企业来说都是一个新名词,但由于“虚拟现实技术”的巨大应用价值,已为宝马、GE(通用)、Boeing(波音)、Sukhoi(苏霍伊)等全球500强中的大型工业企业广泛应用于设计、营销、培训、客户服务等诸多领域。
虚拟现实技术的应用前景 VR技术的应用极为广泛,Helsel与Doherty在1993年对全世界范围内已经进行的805项VR研究项目作了统计,结果表明:目前在娱乐、教育及艺术方面的应用占据主流,达21.4%,其次是军事与航空达12.7%,医学方面达6.13%,机器人方面占6.21%,商业方面占4.96%,另外在可视化计算、制造业等方面也有相当的比重。
下面简要介绍其部分应用。
(1)医学 VR在医学方面的应用具有十分重要的现实意义。
在虚拟环境中,可以建立虚拟的人体模型,借助于跟踪球、HMD、感觉手套,学生可以很容易了解人体内部各器官结构,这比现有的采用教科书的方式要有效得多。
Pieper及Satara等研究者在90年代初基于两个SGI工作站建立了一个虚拟外科手术训练器,用于腿部及腹部外科手术模拟。
这个虚拟的环境包括虚拟的手术台与手术灯,虚拟的外科工具(如手术刀、注射器、手术钳等),虚拟的人体模型与器官等。
借助于HMD及感觉手套,使用者可以对虚拟的人体模型进行手术。
但该系统有待进一步改进,如需提高环境的真实感,增加网络功能,使其能同时培训多个使用者,或可在外地专家的指导下工作等。
另外,在远距离遥控外科手术,复杂手术的计划安排,手术过程的信息指导,手术后果预测及改善残疾人生恬状况,乃至新型药物的研制等方面,VR技术都有十分重要的意义。
(2)娱乐、艺术与教育 丰富的感觉能力与3D显示环境使得VR成为理想的视频游戏工具。
由于在娱乐方面对VR的真实感要求不是太高,故近些年来VR在该方面发展最为迅猛。
如Chicago(芝加哥)开放了世界上第一台大型可供多人使用的VR娱乐系统,其主题是关于3025年的一场未来战争;英国开发的称为“Virtuality”的VR游戏系统,配有HMD,大大增强了真实感;1992年的一台称为“Legeal Qust”的系统由于增加了人工智能功能,使计算机具备了自学习功能,大大增强了趣味性及难度,使该系统获该年度VR产品奖。
另外在家庭娱乐方面VR也显示出了很好的前景。
作为传输显示信息的媒体,VR在未来艺术领域方面所具有的潜在应用能力也不可低估。
VR所具有的临场参与感与交互能力可以将静态的艺术(如油画、雕刻等)转化为动态的,可以使观赏者更好地欣赏作者的思想艺术。
另外,VR提高了艺术表现能力,如一个虚拟的音乐家可以演奏各种各样的乐器,手足不便的人或远在外地的人可以在他生活的居室中去虚拟的音乐厅欣赏音乐会等等。
对艺术的潜在应用价值同样适用于教育,如在解释一些复杂的系统抽象的概念如量子物理等方面,VR是非常有力的工具,Lofin等人在1993年建立了一个“虚拟的物理实验室”,用于解释某些物理概念,如位置与速度,力量与位移等。
(3)军事与航天工业 模拟与练一直是军事与航天工业中的一个重要课题,这为VR提供了广阔的应用前景。
美国国防部高级研究计划局DARPA自80年代起一直致力于研究称为SIMNET的虚拟战场系统,以提供坦克协同训1练,该系统可联结200多台模拟器。
另外利用VR技术,可模拟零重力环境,以代替现在非标准的水下训练宇航员的方法。
(4)管理工程 VR在管理工程方面也显示出了无与伦比的优越性。
如设计一新型建筑物时,可以在建筑物动工之前用VR技术显示一下;当财政发生危机时,可以帮助分析大量的股票、债券等方面的数据以寻找对策等等。
以上仅列出虚拟现实的部分应用前景,可以预见,在不久的将来,虚拟现实技术将会影响甚至改变我们的观念与习惯,并将深入到人们的日常工作与生活。
虚拟现实软件的总结
VR(Virtual Reality,即虚拟现实,简称VR), 虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统它利用计算机生成一种模拟环境是一种多源信息融合的交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。
【简介】虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。
虚拟现实技术(VR)丰要包括模拟环境、感知、自然技能和传感设各等方面。
模拟环境是由计算机生成的、实时动态的三维立体逼真图像。
感知是指理想的VR应该具有一切人所具有的感知。
除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,甚至还包括嗅觉和味觉等,也称为多感知。
自然技能是指人的头部转动,眼睛、手势、或其他人体行为动作,由计算机来处理与参与者的动作相适应的数据,并对用户的输入作出实时响应,并分别反馈到用户的五官。
传感设备是指三维交互设备。
【发展历史】虚拟现实技术演变发展史大体上可以分为四个阶段有声形动态的模拟是蕴涵虚拟现实思想的第一阶段(1963)年以前虚拟现实萌芽为第二阶段(1963 -1972 )虚拟现实概念的产生和理论初步形成为第三阶段(1973 -1989 )虚拟现实理论进一步的完善和应用为第四阶段(1990 -2004 )。
【特征】多感知性指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知,甚至还包括味觉、嗅觉、感知等。
理想的虚拟现实应该具有一切人所具有的感知功能。
存在感指用户感到作为主角存在丁模拟环境中的真实程度。
理想的模拟环境应该达到使用户难辨真假的程度。
交互性指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。
自主性指虚拟环境中的物体依据现实世界物理运动定律动作的程度。
【关键技术】虚拟现实是多种技术的综合,包括实时三维计算机图形技术,广角(宽视野)立体显示技术,对观察者头、眼和手的跟踪技术,以及触觉\\\/力觉反馈、立体声、网络传输、语音输入输出技术等。
下面对这些技术分别加以说明。
实时三维计算机图形相比较而言,利用计算机模型产生图形图像并不是太难的事情。
如果有足够准确的模型,又有足够的时间,我们就可以生成不同光照条件下各种物体的精确图像,但是这里的关键是实时。
例如在飞行模拟系统中,图像的刷新相当重要,同时对图像质量的要求也很高,再加上非常复杂的虚拟环境,问题就变得相当困难。
显示人看周围的世界时,由于两只眼睛的位置不同,得到的图像略有不同,这些图像在脑子里融合起来,就形成了一个关于周围世界的整体景象,这个景象中包括了距离远近的信息。
当然,距离信息也可以通过其他方法获得,例如眼睛焦距的远近、物体大小的比较等。
在VR系统中,双目立体视觉起了很大作用。
用户的两只眼睛看到的不同图像是分别产生的,显示在不同的显示器上。
有的系统采用单个显示器,但用户带上特殊的眼镜后,一只眼睛只能看到奇数帧图像,另一只眼睛只能看到偶数帧图像,奇、偶帧之间的不同也就是视差就产生了立体感。
用户(头、眼)的跟踪在人造环境中,每个物体相对于系统的坐标系都有一个位置与姿态,而用户也是如此。
用户看到的景象是由用户的位置和头(眼)的方向来确定的。
跟踪头部运动的虚拟现实头套:在传统的计算机图形技术中,视场的改变是通过鼠标或键盘来实现的,用户的视觉系统和运动感知系统是分离的,而利用头部跟踪来改变图像的视角,用户的视觉系统和运动感知系统之间就可以联系起来,感觉更逼真。
另一个优点是,用户不仅可以通过双目立体视觉去认识环境,而且可以通过头部的运动去观察环境。
在用户与计算机的交互中,键盘和鼠标是目前最常用的工具,但对于三维空间来说,它们都不太适合。
在三维空间中因为有六个自由度,我们很难找出比较直观的办法把鼠标的平面运动映射成三维空间的任意运动。
现在,已经有一些设备可以提供六个自由度,如3Space数字化仪和SpaceBall空间球等。
另外一些性能比较优异的设备是数据手套和数据衣。
声音人能够很好地判定声源的方向。
在水平方向上,我们靠声音的相位差及强度的差别来确定声音的方向,因为声音到达两只耳朵的时间或距离有所不同。
常见的立体声效果就是靠左右耳听到在不同位置录制的不同声音来实现的,所以会有一种方向感。
现实生活里,当头部转动时,听到的声音的方向就会改变。
但目前在VR系统中,声音的方向与用户头部的运动无关。
感觉反馈在一个VR系统中,用户可以看到一个虚拟的杯子。
你可以设法去抓住它,但是你的手没有真正接触杯子的感觉,并有可能穿过虚拟杯子的“表面”,而这在现实生活中是不可能的。
解决这一问题的常用装置是在手套内层安装一些可以振动的触点来模拟触觉。
语音在VR系统中,语音的输入输出也很重要。
这就要求虚拟环境能听懂人的语言,并能与人实时交互。
而让计算机识别人的语音是相当困难的,因为语音信号和自然语言信号有其“多边性”和复杂性。
例如,连续语音中词与词之间没有明显的停顿,同一词、同一字的发音受前后词、字的影响,不仅不同人说同一词会有所不同,就是同一人发音也会受到心理、生理和环境的影响而有所不同。
使用人的自然语言作为计算机输入目前有两个问题,首先是效率问题,为便于计算机理解,输入的语音可能会相当啰嗦。
其次是正确性问题,计算机理解语音的方法是对比匹配,而没有人的智能。
【应用领域】VR技术可以用于多个领域,包括医学、娱乐、军事航天、室内设计、房地产开发、工业仿真、应急推演、文物古迹、游戏、Web 3D、道路桥梁、地理、教育、演播室、水文地质、维修、培训实训、船舶制造、汽车仿真、轨道交通、能源领域、生物力学、康复训练、数字地球......【五大障碍】虚拟现实技术未来将会发展成一种改变我们生活方式的新突破。
在第一代Oculus Rift的开发者大会上,所有与会者都看到了一个充满潜力的虚拟现实平台。
但是从现在来看,虚拟现实技术想要真正进入消费级市场,还有一段很长的路要走,包括Oculus公司在内。
在Oculus内部,也对虚拟现实技术现在面对的问题进行了讨论,并且不断的在寻找解决方法。
虽然所有问题最终都会找到答案,但是都不太可能在一夜之间全部解决。
目前,开发者如何为用户提供一个真正身临其境的游戏或应用体验还存在比较大的技术局限性,而一些问题到现在仍然还没有很好的解决办法。
中国增强现实产业联盟(AR联盟,ARA)总结5大问题:1. 没有真正进入虚拟世界的方法2. 如何“输入”是一大困扰3. 缺乏统一的标准4. 容易让人感到疲劳5. 装备笨重不美观虚拟现实说到底,就是一门让人们更好的认识世界的技术。
虚拟现实有关知识
vrml虚拟现实技术1 虚拟现实是计算机与用户之间的一种更为理想化的人-机界面形式。
通常用户戴一个头盔(用来显示立体图象的头式显示器),手持传感手套,仿佛置身于一个幻觉世界中,在虚拟环境中漫游,并允许操作其中的“物体”。
与传统计算机相比,虚拟现实系统具有三个重要特征:临境性,交互性,想象性。
虚拟现实技术潜在的应用范围很广,诸如国防、建筑设计、工业设计、培训、医学领域。
例如建筑设计师可以运用虚拟现实技术向客户提供三维虚拟模型,而外科医生还可以在三维虚拟的病人身上试行一种新的外科手术。
虚拟现实技术通过20多年的研究探索,于80年代末走出实验室,开始进入实用化阶段。
目前,世界上少数发达国家在经济、艺术乃至军事等领域,已开始广泛应用这种高新技术,并取得了显著的综合效益。
据外刊报道,美国陆军1994年的“路易斯安娜94”作战演习,就是利用虚拟现实技术进行的。
这次演习不但试验论证了美国陆军制定的条令、战术和部队编成,使之更加符合21世纪的作战要求,还节约演习经费近20亿美元。
那么,什么是虚拟现实技术呢
简单地说,就是人们利用计算机生成一个逼真的三维虚拟环境,通过自然技能使用传感设备与之相互作用的新技术。
它与传统的模拟技术完全不同,是将模拟环境、视景系统和仿真系统合三为一,并利用头盔显示器、图形眼镜、数据服、立体声耳机、数据手套及脚踏板等传感装置。
把操作者与计算机生成的三维虚拟环境连结在一起。
操作者通过传感器装置与虚拟环境交互作用,可获得视觉、听觉、触觉等多种感知,并按照自己的意愿去改变“不随心”的虚拟环境。
比如,计算机虚拟的环境是一座楼房,内有各种设备、物品,操作者会如同身临其境一样,可以通过各种传感装置在屋内行走查看、开门关门、搬动物品;对房屋设计上的不满意之处,还可随意改动。
显然,利用这种虚拟现实技术进行建筑、机械、兵器等设计修改,实施技术操作训练和军事演习活动要容易得多,也便宜得多。
虚拟现实技术一经应用,就向人们展示了诱人的前景,因而受到各国军界的青睐。
从90年代初起,美国率先将虚拟现实技术用于军事领域,主要用于以下四个方面:一是虚拟战场环境。
即通过相应的三维战场环境图形图像库,包括作战背景、战地场景、各种武器装备和作战人员等,为使用者创造一种险象环生、几近真实的立体战场环境。
以增强其临场感觉,提高训练质量。
二是进行单兵模拟训练。
让士兵穿上数据服,戴上头盔显示器和数据手套,通过操作传感装置选择不同的战场背景,输入不同的处置方案,体味不同的作战效果,进而像参加实战一样,锻炼和提高技术水平、快速反应能力和心理承受力。
如美空军用虚拟现实技术研制的飞行训练模拟器,能产生视觉控制,能处理三维实时交互图形,且有图形以外的声音和触感,不但能以正常方式操纵和控制飞行器,还能处理虚拟现实中飞机以外的各种情况,如气球的威胁、导弹的发射轨迹等。
三是实施诸军兵种联合演习,建立一个“虚拟战场”,使参战双方同处其中,根据虚拟环境中的各种情况及其变化,“调兵遣将”、“斗智斗勇”,实施“真实的”对抗演习。
四是进行指挥员训练。
利用虚拟现实技术,根据侦察情报资料合成出战场全景图,让受训指挥员通过传感装置观察敌我兵力部署和战场情况,以便判断敌情,定下正确决心。
美国海军开发的“虚拟舰艇作战指挥中心”就能逼真地摸拟与真的舰艇作战指挥中心几乎完全相似的环境,生动的视觉、听觉和触觉效果,使受训军官沉浸于“真实的”战场之上。
当然,虚拟现实还是一门年轻的科学技术,尚存在不少有待解决的问题。
例如,在计算机生成的虚拟环境中,操作者每次转动头部,计算机必须更新三维图像,由于更新的数据太大,以致计算机还无法完成实时运算。
这就造成了系统滞后。
再如,美空军的虚拟现实模拟器产生的视觉运动信号与人的感觉之间也存在差异,容易引起头痛、眩晕等。
但不管怎样,虚拟现实技术毕竟开辟了富有发展潜力的新领域,它会随着时间的推移日臻完善,在军事领域的应用将会越来越广泛,发挥的作用也将会越来越大。
Vitual Reality WorldWorld Wide Web(WWW) 的出现产生了 HyperText Markup Language (HTML). 这样,文字和图形就可以同时在同一Page中显示, 同时CGI (Common Gateway Interface) 能使Web有更强的交互功能. 随着WWW 的普及和人们对Web日异增长的需求, 就需要不断地有新的Web 语言产生.Java 的出现使人们可以直接在WebPage 上欣赏动画. Java 语言是面向对象的语言, 人们可以在 Page 上设置动画, 并且用 Perl 和 C 编程, 产生可执行代码.目前流行的文本语言有 HTML和SGML (Standard Generalized Markup Language). 它们都是使用tags 来描述资料结构中的不同元素成分.近来又产生了新的Web语言VRML ( Virtual Reality Modeling Language ).它是一种模型语言, 用来描述一个目标对象是如何呈现在 Web 上的. 和HTML一样, VRML也是可由浏览器解释的描述语言, 只不过VRML 不是描述成一个 Page 的格式, 而是描述成3D环境和目标的布局.HTML和 VRML的差别与建筑物的蓝本和它的模型的差别是同一个道理.一. 什么是虚拟现实(VR)? 虚拟现实是计算机模拟的三维环境. 用户可以走进这个环境并操纵系统中的对象. 虚拟现实最重要也是最诱人之处是其实时性和交互性. 通过计算机网络, 多个用户可以参与同一虚拟世界,在视觉与听觉的感受上与现实世界一样,甚至更绚丽多彩.上面所描述的是未来的虚拟现实世界,而现在的虚拟现实系统远不能满足人们的要求. 首先是网络的传输速度不能满足视频的实时传输和大信息量的数据交换;其次是虚拟现 实所使用的设备正处于发展阶段, 远未到普及的程度.二. 虚拟现实所需的硬件设备 虚拟现实和多媒体是有本质区别的. 多媒体是在屏幕上顺序地展现一系列二维图象, 而虚拟现实是用长,宽和高,并从各个方位来显示它的三维图象. 两者另一个重要区别就是硬件设备.普通的计算机交互设备包括键盘, 鼠标, 操作标等, 再由显示器和音箱构成多媒体系统(Keyboard 、 Mouse 、Computer 和 Mounted Display). 追踪器有机械的, 超生的, 磁感应的, 光学的和无源的几种, 其灵巧程度远比一般交互设备优越得多. 头盔则由显示器, 光学系统,立体声音箱和追踪系统构成.三. 现有的网络虚拟现实系统实例 1. SIMNET 它是一个用于军队演习的系统, 是美国军方为了降低训练坦克部队费用而建立的. SIMNET 是第一个大规模网络VR 的实例, 它可以调整近1000个全动态图象的模型器.2. VR游戏 许多游戏公司都在其产品上部分实现了虚拟现实环境, 特别是在局域网上, 使实时性和交互性变为现实.四. VR 语 言 VRML (Virtual Reality Modeling Language) 为虚拟环境的建立提供了规范, 综合了现有三维软件的景象描述语言的优点. 它有基本元素, 顶点, 线和面的定义, 坐标变换有缩放(Scaling), 旋转(Rotation)和平移 (Translation), 并有优化的数据结构.五. VRML 浏 览 器 如果说 VRML 是一种语言的话, 显然VRML 浏览器就是它的解释器. 的确, VRML浏览器的主要功能是读入VRML代码文件, 并把它解释成一图形映象.目前VRML 浏览器软件种类很多, 如 Netscape 公司的Live3D (live3d\\\/index.html), Paper Software公司的WebFX (), SGI和Template Graphics Software公司的WebSpace (), InterVista软件公司的World View ()以及Microsoft 公司的Virtual Explorer ()等等. 它们基本上实现了物体的变换效果, 如灯光, 视角变换, 模糊, 裁剪, 阴影, 投影, 碰撞?觳獾?六. 创建 VRML 文件 VRML 语言具有的基本物体有: 球体,锥体,柱体,立方体,文本等为创建景象提供了方便, 如下面为建立一球体的实例. # VRML V1.0 ASCII Separator { Material { diffuse Color 1 0 0 } # the color red Sphere { } } 目前有许多创建VRML文件的模型软件减少了人们对VRML语言的恐惧感, 并且有许多软件可以把其他三维格式的文件转换成VRML文件, 如3DS, RAW等.
如何学习虚拟现实
安装虚拟得【篇一:装机心得体会机心得体会我们大概用了三个的计算机维护课程来学习如何装系统,一直都是在虚拟机上进行操作的。
一开始装的是windowsxp,然后是win7,实际上大概的步骤都是差不多的。
开始学习在虚拟机上装windowsxp的时候,就是纯粹的一步一步地跟着老师做,只要跟上了老师的速度,并没有什么难度。
当看到虚拟机上自己装好的系统时,虽然知道都是跟着老师才做出来的,一点自己的技术含量都没有,心里依旧还是挺开心的。
当第二次需要自己做的时候,凭着上次的记忆,一步步地做,虽然大部分操作都是对的,但是在新建虚拟机和添加硬盘的时候还是出了点问题。
有两次操作到一半就知道自己做错了,某些选项选错了,只得重头再来,不过这样倒也强化了记忆。
第三次的时候才真正的装好。
前两周装的都是windowsxp,最后一周,老师教我们的是装win7,实际上步骤几乎都是差不多的,就是在后面还有激活操作。
装完以后,老师就告诉我们下一周要考试,在一台空的机器上装win7的系统,而且之前还得负责把一些附件与主机箱链接起来。
虽然在虚拟机上的操作已经比较熟练了,但是考试时换的是一台空的电脑,毕竟没有真的在电脑上装过,不知道会出现什么样的情况,心里还是很担心的。
下课以后和同学讨论了一下,还是对有些地方有疑问,最担心的就是启动盘插上电脑以后是不是会自动出现u启动的界面。
为了让心里踏实一点,和舍友回去以后用自己的电脑实验了一下,果真出现了u启
虚拟现实技术是什么
虚拟现实技术(简称VR),又称灵境技术,是以沉浸性、交互性和构特征的算机高级人机界利用了[ur形学[\\\/ur技术、[u技术技术、[url技术、术和多[u技术视觉听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了的多维[空间,具有广阔的应用前景。
目录简介主要特征面临的问题①②③关键技术1、环境建模技术2、立体声合成和立体显示技术3、触觉反馈技术4、交互技术5、系统集成技术代表性设备BOOM可移动式显示器数据手套:数据手套TELETACT手套数据衣虚拟现实技术的分类桌面级的虚拟现实投入的虚拟现实增强现实性的虚拟现实分布式虚拟现实应用1.在科技开发上2.商业上3.医疗上4.娱乐上5.教育上6.工业上5.现在6.前景总结简介 主要特征 面临的问题 ① ② ③关键技术 1、环境建模技术 2、立体声合成和立体显示技术 3、触觉反馈技术 4、交互技术 5、系统集成技术代表性设备 BOOM可移动式显示器 数据手套:数据手套 TELETACT手套 数据衣虚拟现实技术的分类 桌面级的虚拟现实 投入的虚拟现实 增强现实性的虚拟现实 分布式虚拟现实应用 1.在科技开发上 2.商业上 3.医疗上 4.娱乐上 5.教育上 6.工业上 5.现在 6.前景总结展开 虚拟现实技术编辑本段简介 虚拟现实技术具有超越现实的虚拟性。
它是伴随多媒体技术发展起来的计算机新技术,它利用三维图形生成技术、多传感交互技术以及高分辨率显示技术,生成三维逼真的虚拟环境,用户需要通过特殊的交互设备才能进入虚拟环境中。
这是一门崭新的综合性信息技术,它融合了数字图像处理、计算机图形学、多媒体技术、传感器技术等多个信息技术分支,从而大大推进了计算机技术的发展。
它的一个主要功能是生成虚拟境界的图形,故此又称为图形工作站。
目前在此领域应用最广泛的是SGI、SUN等生产厂商生产的专用工作站,但近来基于Intel奔腾Ⅲ(Ⅳ代)代芯片的和图形加速卡的微机图形工作站性能价格比优异,有可能异军突起。
图像显示设备是用于产生立体视觉效果的关键外设,目前常见的产品包括光阀眼镜、三维投影仪和头盔显示器等。
其中高档的头盔显示器在屏蔽现实世界的同时,提供高分辨率、大视场角的虚拟场景,并带有立体声耳机,可以使人产生强烈的浸没感。
其他外设主要用于实现与虚拟现实的交互功能,包括数据手套、三维鼠标、运动跟踪器、力反馈装置、语音识别与合成系统等等。
虚拟现实技术的应用前景十分广阔。
它始于军事和航空航天领域的需求,但近年来,虚拟现实技术的应用已大步走进工业、建筑设计、教育培训、文化娱乐等方面。
它正在改变着我们的生活。
虚拟与现实两词具有相互矛盾的含义,把这两个词放在一起,似乎没有意义,但是科学技术的发展却赋予了它新的含义。
虚拟现实的明确定义不太好说,按最早提出虚拟现实概念的学者J.Laniar的说法,虚拟现实,又称假想现实,意味着“用电子计算机合成的人工世界”。
从此可以清楚地看到,这个领域与计算机有着不可分离的密切关系,信息科学是合成虚拟现实的基本前提 。
编辑本段主要特征 多感知性(Multi-Sensory)——所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。
理想的虚拟现实技术应该具有一切人所具有的感知功能。
由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种。
浸没感(Immersion)——又称临场感或存在感,指用户感到作为主角存在于模拟环境中的真实程度。
理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。
交互性(Interactivity)——指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。
例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。
构想性(Imagination)——又称为自主性——强调虚拟现实技术应具有广阔的可想像空间,可拓宽人类认知范围,不仅可再现真实存在的环境,也可以随意构想客观不存在的甚至是不可能发生的环境。
一般来说,一个完整的虚拟现实系统由虚拟环境、以高性能计算机为核心的虚拟环境处理器、以头盔显示器为核心的视觉系统、以语音识别、声音合成与声音定位为核心的听觉系统、以方位跟踪器、数据手套和数据衣为主体的身体方位姿态跟踪设备,以及味觉、嗅觉、触觉与力觉反馈系统等功能单元构成



