
学习高等数学的感想
学习高等数学的感想我认为学习高数应该从以下几个方面着手: 一.走出心理的障碍.一些学生学高数学不懂,我认为是心理的障碍.这些同学当中极大数是高中时的数学没有学懂,因此一上来就失去了自信心,自认为自己不行学不懂高数.要我说这是畏惧的心理在作怪.因此要克服学习高数的困难首先应该先克服自己的心理.具体应该怎样克服这种心理难关呢?我认为首先是要找回自己的自信心.当我们拿到一道棘手的数学题,经过反复思考还是无从下手,此时千万不要谎.这时你不妨闭眼默吸一口气,并心中默念我行,我能行.这可能能激发你的思维,激活你的灵感.剩下另一些学生他们学不好高数,那他们的心理又是怎样呢?我自认为,这些学生主要是心不专,也就是在做数学题是心中没有全身心的投入,而是转想他事,这样以来刚刚还有一些思维或灵感就会随着他们的思想跑门而消失,此时他们也许就有一些自负的心理,自认为自己不是学高数的料.这也是不自信的另一种表现,因此学好高数我认为第一点就是要有自信心和专心的思考.这才是学习好高数的基础. 二.注重技巧和换位思考.有时我们拿到一道题咋看都没法做,此时我们不妨换个角度来看这道题,或许我们可以从另一面找到突破口.下面我举个例子来说明我所倡导的换位思考.我们都知道在战争中,我们打仗是注重战略的.现假设我们面前有一城堡,我们无论用什么现代武器都无法将它摧毁,那怎么办?难道是将它围住困死里面的人吗?不行.这样对我们的粮草同样是个消耗.也就是同样我们也是在困自己,再说时间就是金钱.我们没有时间去等待它的自行毁灭.假如他们的后备有积攒我们难道要等一辈子?此时最重要的是我们想办法去破他,我们可以从地底下往上攻.我们也可以从心理上打赢他们,使他们军心散乱等等一些方法.而我们现在碰上的数学难题就是这城堡,我们硬想是破不了的,我们不妨转个弯来考虑一下,也可以退一步想想或许这题没有我们想的那么困难,也可以先放下这道题去看看学过的公式,定理.从先哲的思想中去悟出这道题的突破口等等一些办法都可以用. 每当我们成功的破解一道题时,我想大家都有一种满足感.我也有这种感觉,但是我们就仅仅满足这点吗?我们为什么不再想想这道题,或许还有其他的办法去解决.这样想了,这样做了,确实很费时间,但是这样的效果是不一样,它可以激活我们的思维,下次我们再遇上难题时我们就不至于被挡住了.还有,有时我们做出一道题时发现它的步骤太过于繁琐,这时可
大学高数学习心得交流一下
学习高数的心得体会转眼间,大一将要结束了,记得刚开始接触高数的时候,确实觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路,就能把题目解出来。
所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。
每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。
还记得当时学习曲面积分的时候,怎么也学不会,看过就往,反反复复,搞得我真不知道怎样才好,不过现在还好能大体记住曲面积分的个知识点,各类解法,总结下,曲面积分:在纠结曲面积分的时候我也注意到了,在理解的基础上对知识点进行总结,会让思路变得清晰而准确。
其实我觉得,高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。
我们必须知道解题过程中每一步的依据。
最初,我以为只要把定理内容记住,能做题就行了。
然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。
于是,我试着开始认真地学习每一个定理的推导。
尽管这个过程并不轻松,但我却认为非常值得。
因为只有通过自己去探索的知识,才是掌握得最好的。
前几天在网上看到一个日志感觉挺玩的,就摘下来了:拉格朗日,傅立叶旁,我凝视你凹函数般的脸庞。
微分了忧伤,积分了希望,我要和你追逐黎曼最初的梦想。
感情已
大一学期末《高等数学》期末报告,就写些感想,大约两三百字.急急急,明天早上就要交的!!谢谢
具体要怎么写我也不知道,我们没有布置过这种东西。
你可以谈谈你学习高等数学后的感触啊,比如感受到微积分应用之广泛,上网查查微积分发展的历史以及重要性,往报告上写,然后说说自己学习了微积分以后的感受之类。
望采纳~
大一高数知识点总结,急,快考试了
参考文库这篇文档的,对你有帮助,
高等数学学习心得
高中数学学习心得 数学是一们基础学科,我们从小就开始接触到它。
现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。
甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了
”其实,学习是一个不断接收新知识的过程。
正是由于你在进入高中后学习方法或学习态度的影响,才会造成学得累死而成绩不好的后果。
那么,究竟该如何学好高中数学呢
以下我谈谈我的高中数学学习心得。
一、 认清学习的能力状态。
1、 心理素质。
由于我们在初中特定环境下具有的荣誉感和成就感能否带到高中学习当中,就取决于我们是否具有面对挫折、冷静分析问题的办法。
当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。
2、 学习方式、习惯的反思与认识。
(1) 学习的主动性。
我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订学习计划,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。
(2) 学习的条理性。
我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。
不要忙于记笔记,而对要点没有听清楚或听不全。
笔记记了一大摞,问题也有一大堆。
如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。
(3) 忽视基础。
在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。
(4) 不良习惯。
主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,心思不集中,学习效率不高。
二、 努力提高自己的学习能力。
1、 抓要点提高学习效率。
(1) 抓教材处理。
正所谓“万变不离其中”。
要知道,教材始终是我们学习的根本依据。
教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。
我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。
(2) 抓问题暴露。
对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有针对地起来,注重实效。
(3) 抓解题指导。
要合理选择简捷的运算途径,要根据问题的条件和要求合理地选择运算过程,抓住问题的关键突破口,提高自己的学习能力。
(4) 抓思维训练。
数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。
我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。
(5) 抓45分钟课堂效率。
我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课下去补,则会使学习效率大打折扣。
2、 加强平时的训练强度。
因为有些知识只有在解题过程中,才能体会到它的真正含义。
因此,在平时要保持一定的训练度,适量地做一些有典型代表性的题目,弄懂吃透。
3、 及时的巩固、复习。
在每学完一课内容时,可抽出5-10分钟在课后回忆老师在课堂上所讲的内容,细划分类,抓住概念及其注释,串联前后知识点,形成一个完整的知识网络。
最后,还想提出几点注意:1、提高数学学习能力是一个秩序渐进的过程,要防止急躁心理,贪多求快,囫囵吞枣。
2、学习知识是一个长期的过程。
如华罗庚提倡的“由薄到厚”和“由厚到薄”的学习过程,就是这个道理。
我们要在以后的生活中加强对应用数学思维和创新思维的方法与能力的培养与训练,从长远出发,提高自己的学习能力。
希望同学们能从中有所收获,改进自己的学习方法,提高自己的数学成绩
大一高数导数的学习心得范文
篇一:高等数学学习心得 经过半年的高等数学的学习,对于高等数学有些心得与体会。
首先高等数学是我第一次接触,明显感觉到它与初中及高中时候学习的初等数学有很大的不同。
对于初等数学,我们是为了中考以及高考才努力学习,学习初等数学,只需要做大量的习题,熟练解题的步骤,就可以在考试中获得十分可观的分数。
但是对于高等数学,我们以前学习初等数学的方法以及认识已经不再适用于高等数学的学习。
学习高等数学是为了诸多研究性专业与学科打好基础,它是研究科学问题的最重要的工具,毫不夸张的说高等数学就是一门研究性的学科,学习高等数学我们要抱着科学严谨的态度。
对于高等数学我们要多思考,多理解,从根本上去探索它的定义,它的意义。
学习初等数学的题海战术已不再适用于高等数学。
如果对于高等数学的某个定义你不理解,做再多的题也很难去寻找这个定义的根本,就算你通过做大量的题熟悉某一类题目的解题方法,但将题目类型稍微改变一下,估计你就无计可施了。
所以,我们要从根本上理解它的定义,因为不管题目如何变换,它始终不会离开定义。
所以理解定义是学习高等数学的关键,是高等数学的基础。
兴趣也是学习高等数学的关键。
学习高等数学必须要有兴趣,很多人说高等数学很难很枯燥,就是因为没有产生兴趣,兴趣是学习最好的导师,只要你有兴趣,那么你自然会努力学习这门课程,就不会感觉到乏味与困难。
兴趣是你学习高等数学的动力,有了兴趣你
急求大一高数心得体会
2000字左右。
拜托各位别让我挂科。
。
我学的是数控应用与维护
晕,学数学写心得体会,头一回听说,自己网上找找吧,找不到就随便写写吧,反正是心得体会,很主观的东西。
求一篇大一高数心得
速求200字左右
许多同学报怨数学很难学习,老师讲的总是听得丈二和尚——摸不着和尚。
我认为,学数学是有方法的,只要你掌握了这个党阀并加以运用,相信数学将成为你的朋友。
学数学最重要的就是要善于思考。
如果把数学比作一把锁的话,那思考就是一把开锁的金钥匙,为你打开这把数学之锁。
例如有的同学上课认真听,能把老师讲的内容全部吞下去,却不去消化,不会吸收,最终还是“营养不良”。
掌握是因为他没养成思考的好成绩,不能将老师讲授的东西再加工,不能进行分类整理,更不了解道路的来龙去脉,当然就无法掌握知识的真面目了。
我们要学习蜜蜂那样的工作方法,既会采蜜,又会酿蜜。
在这方面,有的同学就做的比较好,他们在上课不仅专心听讲,他们在老师讲某一题的解题方法时就思考,思考出这样解的道理,虽然后再推出解这一类题的方法。
这样就把老师交的融会贯通了。
我们在学习数学的同时,要注意培养自己善于思考的好习惯,学会灵活运用,举一反三,这样才能取得事半功倍的好成绩。
有人说:“数学是深奥的,变化摸测的,让人搞不懂,猜不透”。
但在我眼里,数学至多是一套打满结的绳索,你必须耐心地解开一个又一个的死结,终有一天你一定能解开所有的结。
数学是利用学过的知识来解决未知的问题。
学习数学要有毅力、有耐心、有恒心。
正如一个挖井的人,挖了很深,就快接近水源时,却放弃;了,先前做的就都白费了,功亏一篑。
解答数学题时,细心也是很重要的。
计算中只要有一丁点儿的疏忽,就可能整题错误。
正如下棋,只要走错一步,可能导致全盘皆输。
大意失荆州,不要等到做错了再后悔不已,世上从一为就未曾有过后悔药。
培根曾经过说:“只见汪洋就以为没有大陆的人,不过是拙劣的探索者”,“拙劣的探索者”就注定会失败,而失败的根本原因在于他们没有探索精神。
科学发明需要探索精神,数学同样也需要探索精神。
不要总是认为每一道题就一定只有一种解答方法,“条条大路通罗马”,要试着去探究,去思考,去发现。
有主见,有信心,也是学习数学必不可少的。
不要总认为老师讲的课本上写的一定是正确的,要有自己的主见,不能人云亦云。
每个人都要对自己有信心,一个人不可能永远成功,在面对失败时,要对自己有信心,相信自己一定能行。
正如可尔德斯密斯所说的:“人生最大的光荣,不在于从不失败,而在于能屡仆屡起。
”
跪求《大学经管类高数心得体会》
相信都有心得体会,下面我就谈一下我对数学学习的一些体会.一,牢牢把握基础,紧扣定义,才能深刻理解新知识数学是一门统一的整体性很强的学科,各个知识点之间是紧密相关的,有人说大学数学的学习与初中和高中学习的关系不大,这种说法是科学的,数学是一门严谨的学科,数学的学习要有一个循序渐进的过程,因此,学习数学是应该重视基础的我们来看下面的例子:求y=x在原点处的切线用中学的知识,我们很容易画出y=x的图形,但是由图象上看y=x在原点出似乎应该是无切线的,其实不然,我们用高中的方法可以求出y=x在原点切线的斜率k=0,即切线为y=0,但是当时我们并不知道这是为什么.现在我们学过了导数和微分中导数的几何意义后,很容易用切线的定义来解释这个问题,目前,切线的定义为:割线的极限,这样看来,y=0确为y=x在原点出的切线,所以,数学的学习是个有基础的学习,只有牢牢把握基础,遇到问题要有打破沙锅问到底的态度,才能学好数学,不仅知其然更要知其所以然.二,归类,总结比较我们学过的数学知识中有许多看似相似的,但却有着本质的不同.这时我们就需要把它们放在一起,找出相同和不同的地方.进行归类总结.然后进行比较.例如高等代数(线性代数)中行列式与矩阵的比较:一个数乘以行列式是用这个数乘以这个行列式中一行的元素,而一个数乘以一个矩阵是指用这个数乘以这个矩阵中的每一个元素,即=再如:空间解析几何中,在空间内建立在线和建立平面方法的比较;点到线,线到线,线到面等距离公式的归纳比较;数学分析(高等数学)中数列极限与函数极限的比较;函数的连续性,可导性与可微性的比较;罗尔定理,拉格朗日定理与柯西中值定理的比较等等.我们分别学这些东西时也许会混淆,但当我们把它们拉到 一块儿放在同一张纸上时,它们的区别和联系也就一同了然了.这样不仅学起来轻松;记起来也很牢固.三,从未知中找已知中理解未知这点是大家常用的.每次上新课,老师都是由已知引出未知,然后由我们从未知中找已知的知识来理解,领悟.其实,不光课上要这样,在课下中的学习中也应该这么做.我们学的越扎实,找的已知就越多,做题时分析的就越深,从而精益求精,达到事半功倍的效果.四,特殊知识特殊记忆.用例子帮助记忆.举一反三.这也是学习数学的重要方法,数学的知识很多,有的需要特别的进行记忆.这时,我们可以用例子来帮助记忆,对一个例题进行透彻的分析后,把其中的知识点记牢,再遇到其他同类型问题时可以做到举一反三.例如:符号函数sgn x 狄利克雷函数黎曼函数我们学习函数时,要把它的图象弄明白,学清楚,用数形结合的方法学习函数再如:当我们记忆函数f在点x可导,则在x连续;但反之不成立.这一命题时,只要举一例子:函数y=,在x=0处连续但不可导.反映到图像上即为在点(0,0)处图象不光滑.另外,学习数学还要多学,多练,多思.切忌眼高手低,心浮气躁.而且认真完成作业也是必要的,在完成作业的同时,我们可以认识到自己的缺点和不足把模糊的知识点清晰化完美自己的知识体系.浅谈数学学习的方法0494051119 刘 影我们从幼儿园到现在的大学都和数学有过很深的接触,出于本人对数学的喜好,对数学产生了深厚的感情.我相信大家对数学的学习方法并不陌生,无论何时学习数学,万变不离其宗,方法也不过如此.最重要的是持之以恒的决心!以下是我对数学学习的方法总结:一,抓住课堂理科学习重在平日功夫,不适于突击复习.平日学习最重要的是课堂时间,听讲要聚精会神,思维要紧跟老师.同时要说明一点,许多同学容易忽略老师所讲的数学思想,数学方法,而注重题目的解答,其实思想方法远远重要于某道题目的解答.二,高质量完成作业所谓高质量是指高正确率和高速度.写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律,技巧等.另外对于老师布置的思考题,也要认真完成.如果不会决不能轻易放弃,要发扬钉子精神,一有空就静心思考,灵感总是突然来到你身边的.最重要的是,这是一次挑战自我的机会.成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象.三,做好预习,勤思考,多提问要做好预习,对不懂的题目做好标记,作为听课重点.对于老师给出的规律,定理,不仅要知其然还要知其所以然,做到刨根问底,这便是理解的最佳途径.学习任何学科都应抱着怀疑的态度,尤其是理科.对于老师的讲解,课本的内容,有疑问应尽管提出,与同学讨论,与老师讨论.总之,思考,提问是清除学习隐患的最佳途径.四,总结比较,理清思绪



