欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 初中数学变式训练心得体会

初中数学变式训练心得体会

时间:2018-10-06 12:09

你认为初中数学变式的本质是什么

在变式教学中体现了哪些数学思想

素质教育是以培养具有创造性思维和创造能力的人才为目标而进行的创新教育为归宿的教育。

在课堂教学中落实素质教育,就要贯穿“学生为主体,训练为主线,能力为主攻”的原则。

现代数学课程标准指出:数学教学不仅仅要使学生获得数学基础知识,基本技能,更要获得数学思想和观念,形成良好的数学思维品质,要通过各种途径,让学生体会数学思考和创造的过程,增强学习的兴趣和自信心,不断提高自主学习的能力。

所以加强在教学中注重变式训练,可以促使学生的思维向多层次、多方向发散,帮助学生在问题的解答过程中去寻找解类似问题的思路、方法,有意识地展现教学过程中教师与学生数学思维活动的过程,充分调动学生学习的积极性、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。

所谓数学变式训练,即是指在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征却不变。

数学教学,使学生理解知识仅仅是一个方面,更主要的是要培养学生的思维能力,掌握数学的思想和方法。

变式其实就是创新。

当然变式不是盲目的变,应抓住问题的本质特征,遵循学生认知心理发展,根据实际需要进行变式。

实施变式训练应抓住思维训练这条主线,恰当的变更问题情境或改变思维角度,培养学生的应变能力,引导学生从不同途径寻求解决问题的方法。

通过多问、多思、多用等激发学生思维的积极性和深刻性。

下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。

一、在形成数学概念的过程中,利用变式启发学生积极参与观察、分析、归纳,培养学生正确概括的思维能力。

从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。

在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。

通过对式子的变形,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,因此教师在以后的练习中也明确类似知识点的考查方向,防止教师盲目出题,学生盲目练习,在有限的时间内使得效益最大化。

二、在理解定理和公式的过程中,利用变式使学生深刻认知定理和公式中概念间的多种联系,从而培养学生多向变通的思维能力。

数学思维的发展,还赖于掌握、应用定理和公式,去进行推理、论证和演算。

由于定理和公式的实质,也是人们对于概念之间存在的本质联系的概括,所以掌握定理和公式的关键在于明确理解定理和公式中概念的联系,对于这种联系的任何形式的机械的理解,是不能熟练、灵活应用定理和公式的根源,它是缺乏多向变通思维能力的结果。

因此在定理和公式的教学中,也可利用变式,展现相关定理和公式之间的联系以及定理、公式成立依附的条件,培养学生辨析与定理和公式有关的判断,运用。

通过变式训练,是要防止形式地、机械地背诵、套用公式和定理提高学生变通思考问题和灵活应用概念、公式以及定理的能力。

三、在解题教学中,利用变式来改变题目的条件或结论,揭示条件、目标间的联系,解题思路中的方法之间的联系与规律,从而培养学生联想、转化、推理、归纳、探索的思维能力。

(一)多题一解,适当变式,.培养学生求同存异的思维能力。

许多数学习题看似不同,但它们的内在本质(或者说是解题的思路、方法是一样的),这就要求教师在教学中重视对这类题目的收集、比较,引导学生寻求通法通解,并让学生自己感悟它们之间的内在联系,形成数学思想方法。

(二)一题多解,触类旁通,培养学生发散思维能力,培养学生思维的灵活性。

一题多解的实质是以不同的论证方式,反映条件和结论的必然本质联系。

在教学中教师应积极地引导学生从各种途径,用多种方法思考问题。

这样,既可暴露学生解题的思维过程,增加教学透明度,又能使学生思路开阔,熟练掌握知识的内在联系。

这方面的例子很多,尤其是几何证明题。

通过一题多解,让学生从不同角度思考问题、解决问题,可以引起学生强烈的求异欲望,培养学生思维的灵活性。

(三)一题多变,总结规律,培养学生思维的探索性和深刻性。

通过变式教学,不是解决一个问题,而是解决一类问题,遏制“题海战术”,开拓学生解题思路,培养学生的探索意识,实现“以少胜多”。

伽利略曾说过“科学是在不断改变思维角度的探索中前进的”。

故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例习题的教育功能。

譬如书本上有这样一道题,求证:顺次连接四边形各边中点所得的四边形是平行四边形。

教师可以不失时机地进行变式,调动起学生的思维兴趣。

变式(1)顺次连接矩形各边中点所得四边形是什么图形

变式(2)顺次连接菱形各边中点所得四边形是什么图形

变式(3)顺次连接正方形各边中点所得四边形是什么图形

做完这四个练习,教师还可以进一步引导学生概括影响组成图形形状的本质的东西是原来四边形的对角线所具有的特征。

又如应用题教学是初中教学中的一个难点,在教学中就可以把同类型的题目通过变式的方式展现给学生,把学生的思维逐步引向深刻。

例如在讲解一元一次方程的实践和探究这节课时,教师从奥运冠军孟关良训练为题材编了一题关于追及问题的应用题,一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20米孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇

然后教师可对本例作以下变式。

变式1:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇

(从先行20米改为先行了20秒)变式2:我们学校有一块300米的跑道在比赛跑步时经常会涉及到相遇问题和追及问题现有甲、乙两人比赛跑步,甲的速度是10米\\\/秒,乙的速度是8米\\\/秒,他们两人同地出发(1)两人同时相向而行经过几秒两人相遇。

(2)两人同时同向而行经过几秒两第一次相遇。

(3)乙先出发5秒,然后甲开始出发,问甲经过几秒两人第一次相遇。

这题该为平时学生熟悉的操场环形跑道,这里三题也是一组变式题,(1)、(2)是同时同地出发的相遇和追及问题,(3)是不同时出发相遇和追及问题,这题还蕴涵着分类讨论的思想。

变式3:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了10秒,教练要求他用45秒追上快艇,孟关良为了追上快艇,必须奋力前划,他以每秒6米的速度划行,划了5秒后他发现用这样的速度不能在规定的时间内追上,请问他的想法用45秒不能追上快艇对不对

如果他要追上请你算一算孟关良后来要用多少速度才能在规定的时间内追上快艇

这样的变式覆盖了同时出发相遇问题、不同时出发相遇问题、同时出发和不同时出发的追及问题等行程问题的基本类型。

这样通过一个题的练习既解决了一类问题,又归纳出各量之间最本质的东西,今后碰到类似问题学生思维指向必定准确,很好培养了学生思维的深刻性。

学生也不必陷于题海而不能自拔。

(三)一题多问,通过变式引申发展,扩充、发展原有功能,培养学生的创新意识和探究、概括能力。

牛顿说过:“没有大胆的猜想就做不出伟大的发现。

”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。

教学中要特别重视对课本例题和习题的“改装”或引申。

数学的思想方法都隐藏在课本例题或习题中,我们在教学中要善于对这类习题进行必要的挖掘,即通过一个典型的例题,最大可能的覆盖知识点,把分散的知识点串成一条线,往往会起到意想不到的效果,有利于知识的建构。

总之,在数学课堂教学中,遵循学生认知发展规律,根据教学内容和目标加强变式训练,对巩固基础、培养思维、提高能力有着重要的作用。

特别是,变式训练能培养培养学生敢于思考,敢于联想,敢于怀疑的品质,培养学生自主探究能力与创新精神。

当然,课堂教学中的变式题最好以教材为源,以学生为本,体现出“源于课本,高于课本”,并能在日常教学中渗透到学生的学习中去。

让学生也学会“变题”,使学生自己去探索、分析、综合,以提高学生的数学素质。

浅谈初中数学课堂变式教学的实践与策略研究

摘要:数学教学不开解题,以其来和巩固已获知识。

变式教以既帮助学生提高数学素质和能力又不重蹈“题海”。

该文联系教学实际,结合初中数学学科特点,围绕数学核心知识的变式教学的实施,试图寻找出扬弃的方法,以提升数学课堂教学的有效性。

借此来推动学生数学能力的提高,具有一定的现实意义。

关键词:变式数学教学策略中图分类号:G633.6文献标识码:A文章编号:1674-098X(2012)12(a)-0-01新课程标准提出:“教育应该面向全体学生,让每个孩子都成为对社会有用的人才”。

教育者应该努力让每一位学生都能快乐学习、幸福成长,教育者要为学生提供广泛的发展空间,重视学生的独立人格,发展学生的个性才能。

教育者要运用各种方法、创造各种条件引导学生主动探究和创造学习。

“变式教学”是很好的载体,该文拟结合笔者的中学数学教学实践,谈谈变式的运用以及策略。

1运用变式教学减负增效1.1变式能更好地揭示数学本质《认知心理》认为,变式是指在教学活动中使本质属性保持恒定而从不同角度、不同方面和不同方式变换事物的非本质属性,以便揭示其本质特征的方法。

1.22.33.3

初中数学

求助

要详细过程

底下的变式练习1也是快快快

谢谢

原式=[2x2-(x2-y2)][(4-x2)-(4-y2)] =(x2+y2)(-x2+y2) =y4-x4 =1\\\/16-1 = -15\\\/16

初中数学考试变式题解题方法

一、填空题(10×3'=30分)1、如果反比例函数的图象过点(1、-2),则这个反比例函数的解析式为_______________。

2、分式 的值为0,则X=______________。

3、若 ,则 __________________。

4、化简: _______________。

5、如图1,在四边形ABCD中AB\\\/\\\/CD,若加上AD\\\/\\\/BC,则四边形ABCD为平行四边形。

现在请你添加一个适当的条件:________________________,使得四边形AECF为平行四边形。

( 图中不再添加点和线)。

图1 图26、如图2,是根据四边形的不稳定性制作的边长为10cm的可活动菱形衣架,若墙上钉子间的距离AB=BC=10cm,则∠1=___________度。

7、如图3,正方形ABCD中,AB=1,点P是对角线AC上一点,分别以AP,PC为对角线作正方形,则两个小正方形的周长的和是_______________.图3 图48、如图4,在梯形ABCD中,AD\\\/\\\/CD,对角线AC⊥BD,且AC=5cm,BD=12cm,则该梯形的两底长之和等于_______________cm.9、直线Y=2X-1与X轴交于点A,与Y轴交于点B,则AB的长是____________。

如图5,P是反比例函数图象在第一象限的 点,且矩形PEOF的面积为3,则反比例函数表达式为__________________YP EO F X图510、直线Y=2X-4与X轴交于点A,与Y轴交于点B,则AB的长是二、选择题(本大题共8小题,每小题3分,共24分。

第小题只有一个正确选项,把正确选项的代号填入题后括号内。

)11、分式 有意义,则x的取值范围是( )A、X>3 B、X<3 C、X≠3 D、X≠-312、天气预报报道宜春市今天最高气温34℃,最低气温20℃,则今天宜春市气温的极差是( )A、54℃ B、14℃ C、-14℃ D、-62℃13、下列四个函数中,当X>0时,Y随X的增大而增大的是( )A、Y= B、Y=- C、Y=-x D、Y=-2x-114、10名学生分虽购买如下尺码的鞋子:20,20,21,22,22,22,23,23,24.(单位:Cm),这组数据中鞋店老板最关心的是( )A、平均数 B、中位数 C、众数 D、方差15、如图6,正比例函数Y=X与反比例函数Y= 的图象相交于点A、C,AB┴X轴于B,CD┴X轴于D,这四边形ABCD的面积为( )A、1 B、2 C、 D、 A DADC B 图6 B E C 图716、如图7,等腰梯形ABCD中,AD\\\/\\\/BC,AE\\\/\\\/DC,∠B=60°,BC=3,ΔABE的周长为6,则等腰梯形ABCD的周长是( )A、 8 B、 10 C、 12 D、1617、将一张矩形纸片ABCD如图8那样折起,使顶点C落在C'处,其中AB=4,若∠C'ED=30°,则折痕ED的长为( )A C'A、4 B、 C、 D、8 DBE C18、如图9,在同一直角坐标系中,正比例函数y=kx+3与反比例函数y= 的图象位置可能是( )y y y yx xxA B C D三、(本大题共3小题,第19题,第20题各4分,第21题5分,共13分)19、化简:20、解方程:21、先化简,再选择你喜欢的又使原式有意义的一个x的值代入求值。

四、(本大题共3小题,每小题各6分,共18分)22、宜丰县蔬菜大户老李有一块正方形菜地,他准备在菜地中间空出两条笔直的交叉的小路,把菜地平均分成面积相等的四部分进行特色种植。

请你在下图中添加两条相交线,帮助老李设计三种不同的分割方案,并简要说明作图方法。

方法一 方法二 方法三23、如图10,已知 ABCD中,E为AD中点,CE的延长线交BA延长线于点F。

求证:A 是BF的中点C DEB FA如图1024、张老师要从班级里数学 成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学 联赛”。

为此,他对两位同学进行了辅导,并在辅导期间测验了10次,测验成绩如下表:第1次 2 3 4 5 6 7 8 9 10甲 68 80 78 79 78 84 81 83 77 92乙 86 80 75 83 79 80 85 80 77 75利用表中数据,解答下列问题:(1)填空完成下表:平均成绩 中位数 众数甲 80 79.5乙 80 80(2)张老师从测验成绩表中,求得甲的方差S甲2 =33.2,请你计算乙10次测验成绩的方差。

(3)请你根据上面的信息,运用所学统计知识,帮张老师选拔出参加“全国数学联赛”的人选,并简要说明理由。

五、(本大题共两小题,第25题7分,第26题8分,共15分)25、如图11,一次函数y=kx+b的图象与反比例函数y= 的图象交于A、B两点。

(1)利用图中条件,求反比例函数的解析式及n的值。

yA(-2,1)xB(1,n)图11(2)求一次函数的解析式。

(3)根据图象写出使一次函数的值大于反比例函数值的x的取值范围。

26、如图12,菱形ABCD的边CD在菱形ECGF的边CE上,且D是CE中点。

连接BE,DF。

(1)观察猜想BE与DF之间的大小关系,并证明你的结论。

(2)图中是否存在旋转能够 互相重合的两个三角形

若存在,请说明旋转过程:若不存在,请说明理由。

回答者: 鬼剑士杰 - 见习魔法师 三级3-21 22:36一、填空题:(每空2分,共32分)1.计算: __________。

2.16的平方根是__________。

3. 的绝对值是__________。

4.在实数范围内分解因式: __________。

5.函数 中,自变量x的取值范围是__________。

6.若直线 与直线 平行,那么 的解析式为__________。

7.反比例函数过点P(2,3),则此函数解析式为__________。

8.写出一个不经过第三象限的一次函数解析式__________。

9.等腰三角形,腰长为x,底为y,周长为30,则y与x的函数关系式为__________,自变量x的取值范围是__________。

10.若 ,则 __________。

11.若 ,则 __________。

12.如图,△ABC中,点D、E分别在AB、AC上。

(1)如果DE‖BC,且AD=5cm,BD=3cm,AE=4cm,那么CE=________cm。

(2)如果AD=3cm,DB=2cm

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片