欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 经典名言 > 经济 市场 博弈 名言

经济 市场 博弈 名言

时间:2017-05-16 00:39

跪求博弈论方面的名言名句

博弈圣经》 献给: 地球上思考着的人们, 以及未来若干个世纪将要出生的年轻人 开篇 博弈是浪漫主义的运动。

博弈一直在以哲学的形式和科学的方式进展着,因而研究它就要进入逻辑哲学领域。

博弈的发现并不提供赌博的诀窍,但它确实讨论了定性取胜的本质。

博弈并不关注目的的本身,而关注达到目的的行为,达到目的的行为才是经济研究的内容。

《博弈圣经》里的博弈哲学思想是从大自然中获取题材、精心制定的一种博弈的世界观。

读者不要认为我有一套自明的原理着手推演,或者靠纯粹的反思达到自然的图景,也不必认为我所描述的表达和举例说明的东西都是受幻想的支配。

它是通过我发明的高熵赛棋,建立了二人对局,发现有一方占优,出现了不平等特性。

就是这样的一个启发,就可以有意让参与博弈的一部分人变成了赌场获胜的性质。

我写了这本《博弈圣经》,我在书里定义了新的概念词,国正论、国正双赢理论、粒子行为论等,已向瑞典斯德哥尔摩作了汇报,是为了抢先占领这些重大理论的发明时间,因为世界上任何一个国家都还没有发现这些理论,这些理论已经发展到可以提供解释博弈的地步,可以从决策人和对抗者的行为结构上解释博弈的结果。

新词语可以引入抽象的概念,建造情境模型,结合语言进入规则。

《博弈圣经》是一本神奇光彩的经济学著作,书中隐含着丰富的东西方智慧,显得意义非凡。

里面的全部思想,不会有支离破碎的印象,它优美复杂多层的语言结构,决不让人厌倦,它像人类几百首完美的诗叠加而成,处处显示和谐和均衡。

《博弈圣经》这本书又像是一个无限的科学宝藏,里面有说不清的科学谜团。

世界上对此有兴趣的人会建立学派和学说。

博弈属于全人类,博弈的语言也是国际性的文化,它超越了国界。

博弈科学思想,作出与大自然挑战的姿态。

《博弈圣经》中的新语言、新词汇唤醒的灵魂意识能更好地理解博弈,理解问题的核心,基本上可以理解所有问题的核心。

博弈适应所有的人,用哲学解释博弈,用博弈作为解释世界的手段,打破传统世界的博弈秩序,把想象的东西用博弈的行为进行复原。

《博弈圣经》这本书会引起世界的骚动。

世界内部和外部事物的许多问题,都可以构成博弈科学的范式,科学知识论、科学的结果就是围绕着这个范式发展起来,同时也改变了人们的思想方式和思维模式,所以,军事战争以外的另一场战争就是─—经济博弈大战,也是未来所有的人都要参与的最文明的战争。

[编辑本段] 不用宇宙天体用博弈 两千多年前人们用宇宙作主体,建立了各种学说推动着科学的发展,建立了古代文明。

后来,科学的黄金时代就不在智者之都的古希腊,不在文艺复兴的意大利,不在牛顿时代的英格兰。

今天著作人用博弈为主体,跟古人用宇宙观建立学派和学说一样,推动当代科学进步。

博弈科学,一直困惑着那些伟大的头脑,迄今没有突破。

直到今天,一个看似普通的高熵赛棋○1的发明,使我们发现了一个秘密,并走近它,产生了新的博弈思想,这个博弈的千年难题才被撕开了缺口。

我们能改变博弈粒子行为状态,就能改变生存状态,也就是改变万事万物的结果。

我们要有更多的反思和更长远的设想,博弈的大发明,可能会在预知未来领域有所突破。

博弈容易被人误解为赌博,看成是歪门邪道,其实博弈属于经济学。

它在1948年才确立,是长期隐藏在科学大厦之外的一门科学,并能应用于所有的事情中。

全世界的人开始重视博弈,诺贝尔委员会五十年前就开始重视博弈,世界上没有多少人懂得博弈,也没有一本完整的博弈思想理论著作,博弈竟能成为获得诺贝尔经济学奖的最高学科,博弈之所以神秘又神圣,是因为它隐藏在幽深的阴影处。

《博弈圣经》里提出的粒子行为论和国正双赢理论,将来一定会渗透到东西方世界的文化里,影响着世界上世世代代的年轻人,博弈终将成为社会科学思想的中心。

《博弈圣经》中的理论思想显示:中国的瓷土、绸缎、中草药、火药、指南针和造纸术都是历史的映像,再谈就是无聊,这已不是现代社会的核心,只有用新思维定义宏观科学的命题,才能恢复一个伟大民族的社会观和价值观。

不能空谈五花八门的什么什么主义,应该谈现实主义,《博弈圣经》406节中这样写道:“人的活动决定着财富,博弈的行为决定输赢。

任何时候都可以把活动分为两类:利己和利它,或者说一个是有目的性的获得,另一个是义务性的提供。

以上两种博弈的结果告诉我们,社会有资产和共产两大体系,资产和共产也都是社会中间的副产品,资产阶级社会有共产行为,共产社会也有资产行为,从博弈的意义上来讲,这两种社会性质一直进行长期博弈行为的纠缠,资本主义没有自己的固定根基,是在哪里都能生存下来的普遍秩序。

共产社会只在本地有相当成功的表现才能维持一套社会服务的特权和均衡,这是人人都能感觉到的,这是核心问题的空间。

未来的一切活动和行为就是在这个空间里进行各方面的博弈选择。

”任何人都不要把自己的国家当成一个古董大市场,几百年几千年的哲学垃圾没有太大价值,也没有被社会完全认可的古董,不再具备现实的操作价值。

在历史上东方人和西方人都有过欣赏古董的学派倾向,现在的各国学术界总是有一小撮人抄一些所谓的西方名著,凑合厚厚一大本,称为汇编,东抄一段西抄一段,把西方争论一两千年的彼此不同的宇宙观点拿出来凑数。

看看现在的各国人,谁还欣赏那些古垃圾

人人宣传博弈,人人使用博弈,自主研究搞科学,只有博弈科学才是人类的未来。

关于约翰纳什的博弈论

纳什均衡定义: 假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己效用最大化。

所有局中人策略构成一个策略组合(Strategy Profile)。

纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。

即在给定别人策略的情况下,没有人有足够理由打破这种均衡。

纳什均衡经典案例:囚徒困境 (1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。

) 假设有两个小偷A和B联合犯事、私入民宅被警察抓住。

警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。

如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。

如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。

表2.2给出了这个博弈的支付矩阵。

表2.2 囚徒困境博弈 —————————————————————————— ┃ B ┃ B ┃ ————————┃————————┃————————┃ ┃ 坦白 ┃ 抵赖 ┃ ————————┃————————┃————————┃ A 坦白 ┃ –8, –8 ┃ 0, –10 ┃ ————————┃————————┃————————┃ A 抵赖 ┃ –10, 0 ┃ –1, –1 ┃ ————————┃————————┃————————┃ 关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。

但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当·斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。

这两个人都会有这样一个盘算过程:假如他坦白,我抵赖,得坐10年监狱,坦白最多才8年;他要是抵赖,我就可以被释放,而他会坐10年牢。

综合以上几种情况考虑,不管他坦白与否,对我而言都是坦白了划算。

两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。

基于经济学中Rational agent的前提假设,两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被释放就不会出现。

这样两人都选择坦白的策略以及因此被判8年的结局,纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战:按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。

但是我们可以从“纳什均衡”中引出“看不见的手”原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。

记载纳什生平的书有:《普林斯顿的幽灵》(又译为《美丽心灵》)西尔维娅.娜萨 再来看一段 纳什均衡理论的介绍 : 1994年诺贝尔经济学奖的获得者是美国普林斯顿大学的约翰·纳什。

纳什获得诺贝尔经济学奖的原因是他在博奕沦领域的贡献,他提出了“纳什均衡”理论、关于博奕论,流传最广的是一个叫做“囚徒困境”的故事: 话说有一天,一个富翁在家中被杀,财物被盗;警方在此案的侦破过程中,抓到两个犯罪嫌疑人张三和李四,并从他们的住处搜出被害人家中丢失的财物。

但是,他们矢口否认曾杀过人,辩称他们只是顺手牵羊偷了点儿东西。

于是警方将两人隔离,分别关在不同的房间进行审讯。

警察分别对张三和李四说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们1年刑期。

但是,我可以和你做个交易。

如果你单独坦白杀人的罪行,我只判你3个月的监禁,但你的同伙要被判10年刑。

如果你拒不坦白,而被同伙检举,那么你就将被判10年刑,他只判3个月的监禁。

但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。

” 张三和李四怎么办呢?他们面临着两难的选择——坦白或抵赖。

显然最好的策略是双方都抵赖,结果是大家都只被判一年。

但是由于两人处于隔离的情况下无法串供,按照亚当·斯密的理论,每一个人都是一个“理性的经济人”,都会从利己的目的出发进行选择。

这两个人都会有这样一个盘算过程:假如他招了,我不招,得坐10年监狱,招了才5年,所以招了划算;假如我招了,他也招,得坐5年,他要是不招,我就只坐3个月,而他会坐10年牢,也是招了划算。

综合以上几种情况考虑,不管他招不招,对我而言都是招了划算。

两个人都会动这样的脑筋,最终,两个人都选择了招?结果都被判5年刑期。

原本对双方都有利的策略(抵赖)和结局 (被判1年刑)就不会出现。

这就是著名的“囚徒困境”。

它实际上反映了一个很深刻的问题,这就是个人理性与集体理性的矛盾。

实际上,如果两个都抵赖,各判刑1年,显然比都判5年好,但实际上做不到,因为它不满足个人理性要求。

作为一个理性的人,张三和李四都会想,如果我抵赖而对方坦白的话,自己就可能判刑10年,理性的人是不会冒这种险的。

但张三和李四都理性选择的结果,两人都被判了5年,最优的被判1年的结果并没有出现。

也就是说,对每个人而言都是理性的选择,但对于整个集体来说却是不理性的。

这与传统经济学所言的结论相悖。

传统经济学认为市场经济存在“看不见的手”,它调节的结果是每个人的理性选择最终会造成对整个集体的最大利益。

实际上,就像囚徒困境一样,这只看不见的手在参与选择的人数只有少数几个的时候会失去作用,因为这个时候,人们决策的过程会考虑其他参与者的想法,就像赌博和下棋的时候一样,这就和买家和卖家数量都巨大时的完全竞争不完全一样,需要新的一套思路进行研究。

在上面的例子中,我们注意到了一个并非最优的结果,就是两人都选择坦白的策略以及因此被判5年的结果,这个结果被称为“纳什均衡”,也叫非合作均衡。

博奕论中最基本的概念就是“纳什均衡”,一谈到博奕论,人们说的最多的最著名的也是“纳什均衡”。

纳什均衡指的是这样一种战略组合,这种战略组合由所有参与人的最优战略组成,也就是说,给定别人战略的情况下,没有任何单个参与人有积极性选择其他战略使自己获得更大利益,从而没有任何人有积极性打破这种均衡。

当然,“纳什均衡”虽然是由单个人的最优战略组成,但并不意味着是一个总体最优的结果。

如上述,在个人理性与集体理性的冲突的情况下,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。

从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。

同时,它也提示我们:合作是有利的“利己策略”。

实际上,如果上述两个囚徒能够串供进行合作,那么他们一定会选择都抵赖从而只因偷盗罪被判1年,当然,正是考虑到了这一点,所以警察才对他们隔离审查从而获知了事实真相,对囚徒而言最有利的合作结果才没有出现。

“纳什均衡”描述的就是一种非合作博奕均衡,在现实中非合作的情况要比合作情况普遍。

所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博奕理论的重大发展,甚至可以说是一场革命。

今天,纳什均衡被广泛应用于各个领域的研究,尤其在进行制度分析寸,我们可应用它得出一个很重要结论:一种制度(体制)安排要发生效力,必须是一种纳什均衡。

否则,这种制度安排便不能成立。

(据《诺贝尔经济学奖经典理论》一书)采纳哦

经济学的博弈指什么>?

经济学中的“智猪博弈”(Pigs’payoffs)  这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。

猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。

如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。

当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。

  那么,两只猪各会采取什么策略

答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。

  原因何在

因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。

对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。

反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。

  “小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。

规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。

  如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗

试试看。

  改变方案一:减量方案。

投食仅原来的一半分量。

结果是小猪大猪都不去踩踏板了。

小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。

谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。

  如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。

  改变方案二:增量方案。

投食为原来的一倍分量。

结果是小猪、大猪都会去踩踏板。

谁想吃,谁就会去踩踏板。

反正对方不会一次把食物吃完。

小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。

  对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。

  改变方案三:减量加移位方案。

投食仅原来的一半分量,但同时将投食口移到踏板附近。

结果呢,小猪和大猪都在拼命地抢着踩踏板。

等待者不得食,而多劳者多得。

每次的收获刚好消费完。

  对于游戏设计者,这是一个最好的方案。

成本不高,但收获最大。

  原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。

但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。

为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。

而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。

  比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。

这相当于“智猪博弈”增量方案所描述的情形。

但是如果奖励力度不大,而且见者有份(不劳动的“小猪”也有),一度十分努力的大猪也不会有动力了----就象“智猪博弈”减量方案一所描述的情形。

最好的激励机制设计就象改变方案三----减量加移位的办法,奖励并非人人有份,而是直接针对个人(如业务按比例提成),既节约了成本(对公司而言),又消除了“搭便车”现象,能实现有效的激励。

  许多人并未读过“智猪博弈”的故事,但是却在自觉地使用小猪的策略。

股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人,等等。

因此,对于制订各种经济管理的游戏规则的人,必须深谙“智猪博弈”指标改变的个中道理。

  纳什博弈论的原理与应用  1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。

他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。

从而揭示了博弈均衡与经济均衡的内在联系。

纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。

然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。

但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。

要不是30多年的严重精神病折磨,恐怕他早已站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。

  纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。

然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。

  1948年纳什到普林斯顿大学读数学系的博士。

那一年他还不到20岁。

当时普林斯顿可谓人杰地灵,大师如云。

爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。

博弈论主要是由冯·诺依曼(1903—1957)创所立的。

他是一位出生于匈牙利的天才的数学家。

他不仅创立了经济博弈论,而且发明了计算机。

早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。

  1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。

尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。

例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。

冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。

合作型博弈在20世纪50年代达到了巅峰期。

然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。

正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始

纳什不是一个按部就班的学生,他经常旷课。

据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。

斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。

于是,又走人了。

然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。

纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。

1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。

殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感

这一年的10月,他骤感才思潮涌,梦笔生花。

其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。

纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。

1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。

说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。

盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。

盖尔建议他马上整理出来发表,以免被别人捷足先登。

纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。

结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。

纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。

这一点也是值得我们深思的。

国内提一个教授,要求在“核心的刊物”上发表多少篇文章。

按照这个标准可能纳什还不一定够资格。

  1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。

  纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。

20岁出头已成为闻名世界的数学家。

特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。

他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。

后续的研究者对博弈论的贡献,都是建立在这一概念之上的。

由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。

  囚徒困境博弈  在博弈论中,含有占优战略均衡的一个著名例子是由塔克给出的“囚徒困境”(prisoners’ dilemma)博弈模型。

该模型用一种特别的方式为我们讲述了一个警察与小偷的故事。

假设有两个小偷A和B联合犯事、私入民宅被警察抓住。

警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。

如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。

如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。

表2.2给出了这个博弈的支付矩阵。

  表2.2 囚徒困境博弈 [Prisoner's dilemma]  ——————————————————————————  ┃ B ┃ B ┃  ————————┃————————┃————————┃  ┃ 坦白 ┃ 抵赖 ┃  ————————┃————————┃————————┃  A 坦白 ┃ –8, –8 ┃ 0, –10 ┃  ————————┃————————┃————————┃  A 抵赖 ┃ –10, 0 ┃ –1, –1 ┃  ————————┃————————┃————————┃  我们来看看这个博弈可预测的均衡是什么。

对A来说,尽管他不知道B作何选择,但他知道无论B选择什么,他选择“坦白”总是最优的。

显然,根据对称性,B也会选择“坦白”,结果是两人都被判刑8年。

但是,倘若他们都选择“抵赖”,每人只被判刑1年。

在表2.2中的四种行动选择组合中,(抵赖、抵赖)是帕累托最优的,因为偏离这个行动选择组合的任何其他行动选择组合都至少会使一个人的境况变差。

不难看出,“坦白”是任一犯罪嫌疑人的占优战略,而(坦白,坦白)是一个占优战略均衡。

  要了解纳什的贡献,首先要知道什么是非合作博弈问题。

现在几乎所有的博弈论教科书上都会讲“囚犯的两难处境”的例子,每本书上的例子都大同小异。

  博弈论毕竟是数学,更确切地说是运筹学的一个分支,谈经论道自然少不了数学语言,外行人看来只是一大堆数学公式。

好在博弈论关心的是日常经济生活问题,所以不能不食人间烟火。

其实这一理论是从棋弈、扑克和战争等带有竞赛、对抗和决策性质的问题中借用的术语,听上去有点玄奥,实际上却具有重要现实意义。

博弈论大师看经济社会问题犹如棋局,常常寓深刻道理于游戏之中。

所以,多从我们的日常生活中的凡人小事入手,以我们身边的故事做例子,娓娓道来,并不乏味。

话说有一天,一位富翁在家中被杀,财物被盗。

警方在此案的侦破过程中,抓到两个犯罪嫌疑人,斯卡尔菲丝和那库尔斯,并从他们的住处搜出被害人家中丢失的财物。

但是,他们矢口否认曾杀过人,辩称是先发现富翁被杀,然后只是顺手牵羊偷了点儿东西。

于是警方将两人隔离,分别关在不同的房间进行审讯。

由地方检察官分别和每个人单独谈话。

检察官说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们一年刑期。

但是,我可以和你做个交易。

如果你单独坦白杀人的罪行,我只判你三个月的监禁,但你的同伙要被判十年刑。

如果你拒不坦白,而被同伙检举,那么你就将被判十年刑,他只判三个月的监禁。

但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。

”斯卡尔菲丝和那库尔斯该怎么办呢

他们面临着两难的选择——坦白或抵赖。

显然最好的策略是双方都抵赖,结果是大家都只被判一年。

但是由于两人处于隔离的情况下无法串供。

所以,按照亚当·斯密的理论,每一个人都是从利己的目的出发,他们选择坦白交代是最佳策略。

因为坦白交代可以期望得到很短的监禁———3个月,但前提是同伙抵赖,显然要比自己抵赖要坐10年牢好。

这种策略是损人利己的策略。

不仅如此,坦白还有更多的好处。

如果对方坦白了而自己抵赖了,那自己就得坐10年牢。

太不划算了

因此,在这种情况下还是应该选择坦白交代,即使两人同时坦白,至多也只判5年,总比被判10年好吧。

所以,两人合理的选择是坦白,原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。

这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。

因为,每一方在选择策略时都没有“共谋”(串供),他们只是选择对自己最有利的策略,而不考虑社会福利或任何其他对手的利益。

也就是说,这种策略组合由所有局中人(也称当事人、参与者)的最佳策略组合构成。

没有人会主动改变自己的策略以便使自己获得更大利益。

“囚徒的两难选择”有着广泛而深刻的意义。

个人理性与集体理性的冲突,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。

他们两人都是在坦白与抵赖策略上首先想到自己,这样他们必然要服长的刑期。

只有当他们都首先替对方着想时,或者相互合谋(串供)时,才可以得到最短时间的监禁的结果。

“纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战。

按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。

不妨让我们重温一下这位经济学圣人在《国富论》中的名言:“通过追求(个人的)自身利益,他常常会比其实际上想做的那样更有效地促进社会利益。

”从“纳什均衡”我们引出了“看不见的手”的原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。

两个囚徒的命运就是如此。

从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。

因此,从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”。

但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。

也就是中国人说的“己所不欲勿施于人”。

但前提是人所不欲勿施于我。

其次,“纳什均衡”是一种非合作博弈均衡,在现实中非合作的情况要比合作情况普遍。

所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博弈理论的重大发展,甚至可以说是一场革命。

  从“纳什均衡”的普遍意义中我们可以深刻领悟司空见惯的经济、社会、政治、国防、管理和日常生活中的博弈现象。

我们将例举出许多类似于“囚徒的两难处境”这样的例子。

如价格战、军奋竞赛、污染等等。

一般的博弈问题由三个要素所构成:即局中人(players)又称当事人、参与者、策略等等的集合,策略(strategies)集合以及每一对局中人所做的选择和赢得(payoffs)集合。

其中所谓赢得是指如果一个特定的策略关系被选择,每一局中人所得到的效用。

所有的博弈问题都会遇到这三个要素。

  价格战博弈:  现在我们经常会遇到各种各样的家电价格大战,彩电大战、冰箱大战、空调大战、微波炉大战……这些大战的受益者首先是消费者。

每当看到一种家电产品的价格大战,百姓都会“没事儿偷着乐”。

在这里,我们可以解释厂家价格大战的结局也是一个“纳什均衡”,而且价格战的结果是谁都没钱赚。

因为博弈双方的利润正好是零。

竞争的结果是稳定的,即是一个“纳什均衡”。

这个结果可能对消费者是有利的,但对厂商而言是灾难性的。

所以,价格战对厂商而言意味着自杀。

从这个案例中我们可以引伸出两个问题,一是竞争削价的结果或“纳什均衡”可能导致一个有效率的零利润结局。

二是如果不采取价格战,作为一种敌对博弈论(vivalry game)其结果会如何呢

每一个企业,都会考虑采取正常价格策略,还是采取高价格策略形成垄断价格,并尽力获取垄断利润。

如果垄断可以形成,则博弈双方的共同利润最大。

这种情况就是垄断经营所做的,通常会抬高价格。

另一个极端的情况是厂商用正常的价格,双方都可以获得利润。

从这一点,我们又引出一条基本准则:“把你自己的战略建立在假定对手会按其最佳利益行动的基础上”。

事实上,完全竞争的均衡就是“纳什均衡”或“非合作博弈均衡”。

在这种状态下,每一个厂商或消费者都是按照所有的别人已定的价格来进行决策。

在这种均衡中,每一企业要使利润最大化,消费者要使效用最大化,结果导致了零利润,也就是说价格等于边际成本。

在完全竞争的情况下,非合作行为导致了社会所期望的经济效率状态。

如果厂商采取合作行动并决定转向垄断价格,那么社会的经济效率就会遭到破坏。

这就是为什么WTO和各国政府要加强反垄断的意义所在。

  污染博弈:  假如市场经济中存在着污染,但政府并没有管制的环境,企业为了追求利润的最大化,宁愿以牺牲环境为代价,也绝不会主动增加环保设备投资。

按照看不见的手的原理,所有企业都会从利己的目的出发,采取不顾环境的策略,从而进入“纳什均衡”状态。

如果一个企业从利他的目的出发,投资治理污染,而其他企业仍然不顾环境污染,那么这个企业的生产成本就会增加,价格就要提高,它的产品就没有竞争力,甚至企业还要破产。

这是一个“看不见的手的有效的完全竞争机制”失败的例证。

直到20世纪90年代中期,中国乡镇企业的盲目发展造成严重污染的情况就是如此。

只有在政府加强污染管制时,企业才会采取低污染的策略组合。

企业在这种情况下,获得与高污染同样的利润,但环境将更好。

  贸易战博弈论  这个问题对于刚刚加入WTO的中国而言尤为重要。

任何一个国家在国际贸易中都面临着保持贸易自由与实行贸易保护主义的两难选择。

贸易自由与壁垒问题,也是一个“纳什均衡”,这个均衡是贸易双方采取不合作博弈的策略,结果使双方因贸易战受到损害。

X国试图对Y国进行进口贸易限制,比如提高关税,则Y国必然会进行反击,也提高关税,结果谁也没有捞到好处。

反之,如X和Y能达成合作性均衡,即从互惠互利的原则出发,双方都减少关税限制,结果大家都从贸易自由中获得了最大利益,而且全球贸易的总收益也增加了。

  博弈论--这是一个热得烫手的概念。

它不仅仅存在于数学的运筹学中,也正在经济学中占据越来越重要的地位(近几年诺贝尔经济学奖就频频授予博弈论研究者),但如果你认为博弈论的应用领域仅限于此的话,那你就大错了。

实际上,博弈论甚至在我们的工作和生活中无处不在

在工作中,你在和上司博弈,也在和下属博弈,你也同样会跟其他相关部门人员博弈;而要开展业务,你更是在和你的客户以及竞争对手博弈。

在生活中,博弈仍然无处不在。

博弈论代表着一种全新的分析方法和全新的思想。

  诺贝尔经济学奖获得者包罗·萨缪尔逊如是说:  要想在现代社会做个有价值的人,你就必须对博弈论有个大致的了解。

  也可以这样说,要相赢得生意,不可不学博弈论;要想赢得生活,同样不可不学博弈论。

博弈论和经济学是什么关系

1,博弈论和经济学的关系:博弈论是经济学学科分支,博弈论也是经济学的标准分析工具之一。

2,博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。

博弈论主要研究公式化了的激励结构间的相互作用。

在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

和《博弈圣经》相关的名言有哪些

1994年,三位经济学家因为在博弈论上的杰出贡献,荣获诺贝尔奖,促使博弈论大放异彩,正广泛而深远地改变着经济学及相关学科的思维方式。

运用博弈论的思想,就能洞察到竞争中更深层的东西,为自己创造及分得最大的市场利益。

  一、博弈竞争与完全竞争的比较  由经济学家亚当·斯密所创建的古典的完全竞争理论,描述的仅仅是竞争的结果而并非竞争行为。

更多有趣而又重要的竞争行为被形容为无形 的手, 总结在一个参数--价格里。

牛津字典上定义的竞争是指拥有同样的商品的厂商之间为争夺顾客而进行的斗争。

顾客的争夺是一个动态的过程,这个过程就 是竞争。

一个完全竞争状态下的厂商,根本不必在意同行业其他厂商的活动,而只是市场价格的被动接受者,没有任何斗争存在。

而崭新的搏弈理论认为竞争是 在不确定条件下的一系列战略决策,强调社会经济活动中的人的主观能动性,完全克服了古典经济理论回避竞争实质的根本缺陷。

  二、博弈竞争在市场营销中的应用  1.创建营销的价值网  营销的主要目标是通过提供产品或服务来满足目标顾客的需要,从而获得最大利润。

为了实现这一 目标,公司必须与许多参与者打交道,如顾客、供应商、竞争者等。

每个参与者就如同是搏弈论中的局中人,公司的每一营销决策都会对参与者产生影响,参与者的 反应反过来又会影响公司的下一步决策,如何决策才能使大家的利益达到均衡呢,这正是博弈论所研究的问题。

  2.回避危险的价格战  为了摆脱汽车市场的恶性循环的价格战,通用汽车公司主动重塑竞争,发行了一种信用卡,称作GM卡。

根据这种信用卡的规定,持卡人购买或 租用通用汽车时,可享受5%的折扣,以每年不超过五百美元,累计不超过三干五百美元为限。

GM卡很微妙地改变了价格战,创造了一种从双输到双赢的局面。

因 为GM卡取代了通用汽车公司过去使用的诱因,对非持卡人来说,通用汽车的车价相对提高,因为经销商不再提供现金折扣了。

这些潜在购买者可能会考虑购买福特 或其他品牌汽车,福特汽车公司也获得了喘息的机会,从而回避了危险的价格战。

  当我们用博弈论的方法思考时,会发现有时迈向成功最好的方法,是让价值网中的局中人和你共享成功的果实。

  3.辅助产品线的设计  当几个厂商提供同质产品时,竞争的焦点必然集中于价格,最终将导致价格逼近边际成本的两败俱伤局面。

所以新产品开发中,提供比竞争者更 具特色的更好的产品,往往是上上策。

如若受到技术、资金等约束,提供高质产品不能成为可能时,提供低质产品也比提供同类产品要好得多。

因为它不但不会引起 竞争者的强烈反应,还可以与同质产品厂商分享不同市场的利润,和平共处。

  在高质打印机产品上,IBM公司是非常成功的,针对这一情形,Howlett-Packard公司开发了低质打印机产品。

原本,两公司 可以分享高质低质市场的利润,但财大气粗的 IBM却错误决策--跟随出品了类似的低质打印机产品,从而导致了严重的低质市场的价格战,由于价格的大幅度降低所激起的巨大需求,反过来又严重侵蚀了 IBM的高质打印机市场,可谓是一着败棋,损失惨重。

  能提供一个完善的产品线固然有许多好处,但是充分认识市场反应和不同产品利润的相关性也是至关重要的。

同质产品会导致危险的价格大战,所以公司在产品线设计时一定要反复分析和预计竞争者、消费者、供应商的反应,这正是博弈论的精华。

  4.建立高效的激励机制  高效的激励机制对公司的营销效果是很重要的。

如在销售人员中开展广泛的销售竞赛,就是一种 激励销售力的极好的方式,与按销售任务支付奖金的方式相比,优势在于管理人员不必为设定适当的报酬水平而绞尽脑汁地估计未来可能的销售情况,无论销售是困 难还是容易,奖励的都是那些最出色的销售人员,而出色的销售工作本身既包含了员工的努力,也包含有市场及个人机遇的因素。

这种方式用于对产品需求不确定的 新产品销售激励中特别有效。

同时,评论一个人比另一个人工作得好远比精确评价每个人的工作绩效更为方便。

  当然这种竞赛激励方式也有它的不足之处,即过度强调竞争,易于造成由于晋升、表扬和货币报酬的不同所产生的员工之间的相互敌视,不利于 达成企业的共同目标。

在这方面,日本企业走在了前面。

在日本的丰田汽车公司,公司的收入不直接与个人完成任务相联系,而用来对在工作组范围内的职责支 付报酬,大大增强了为了达到组织目标的个人合作,同时也能增强报酬对个人的影响与激励,符合员工与组织两方的利益,实现了个人利益与集体利益的统一,这就 是更完善的立体化的竞赛激励机制。

  5.揭示隐藏的需求信息  当犹豫不决是否引入新产品及如何为新产品定价时,厂商就必须知道顾客对新产品的态度及他们 愿意支付的价格。

传统的市场研究方法包括问卷调查、集中群及市场预测等。

而另一种能揭示对产品的需求的方法就是让顾客进行投标订价。

如果投标的订价规律设 计得当,就可以诱导投标的顾客揭示出他们的偏好及态度。

因为投标的本质,就是通过竞争过程,聚集分散的信息,揭示出隐含的内部信息。

所以从原则上讲,投标 作为一种有用的市场研究方法,是对传统市场研究方法的补充,对它的进一步研究也是有益的。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片