
奇妙的克隆这篇文章主要讲了克隆技术,《西游记》里的孙大圣,紧急关头常常拔下一把毫毛,再吹一口气,毫毛立刻变成了一群和自己一模一样的孙悟空。这当然是神话,不过用今天的科学名词来讲,那就是孙悟空能够快速地克隆自己。我们知道,高等动物一般要通过雄性和雌性生殖细胞的.结合,才能繁殖后代,人们把这种繁殖叫做有性繁殖。换句话说,每只动物都有自己的爸爸妈妈。如果不经过两性细胞结合而直接繁衍后代,就叫无性繁殖,也称克隆。
许多植物都有先天克隆的本领。例如,从一棵大柳树上剪下几根枝条插进土里,枝条就会长成一株株活泼可爱的小柳树;把马铃薯切成许多小块种进地里,就能收获许多新鲜的马铃薯,把仙人掌切成几块,每块落地不久就会生根,长成新的仙人掌……此外,一些植物还可以通过压条或嫁接培育后代。凡此种种,都是植物的克隆。一些单细胞微生物,如细菌,经过20分钟左右的时间,就可以一分为二,再分为四个,八个……这就是低等生物的克隆。
那么,高等动物可不可以克隆呢?从20世纪开始,科学家在这方面进行了卓有成效的研究。1996年,英国科学家成功地克隆出了世界上第一只克隆羊。这是一项了不起的成就,轰动了当时的科学界。科学家借用一名乡村歌手的名字,给这只克隆羊起名为“多利”。克隆技术是一项可以造福于人类的科技成果。
人们将克隆技术与其他科技成果结合,可以根据需要培育出优质、高产的粮食、蔬菜新品种;也可以培育大量品质优良的家畜,大大提高饲养效率。
克隆技术还可以挽救一些濒危物种,让一些濒临灭绝的动物免遭厄运,从而调节大自然的生态平衡。人们利用克隆技术能够培植人体的皮肤进行植皮手术;能够“制造”出人的了耳朵、软骨、肝脏和心脏等人体“配件”,一旦病人需要,就能重新“装配”……
奇妙的克隆技术正向人类展示它诱人的前景。
读了这篇文章之后,我的启发是,任何事物都有它的两面性,是不能单纯的用“好”、”坏“来简单的描述的。如果把克隆人体的某些器官作为人类疾病的治疗用,恐怕没有多少人会反对,如果是为了优化一些物种而进行克隆,也算不上是坏事。如果有伤人类伦理、文明或者是危害人类而进行克隆,那可就不是一件好事了。
复制生命—探索基因世界读后感1
今天,我读了一本很有趣的科学书籍,名叫《复制生命——探索基因世界》。
一打开这本书,我就被它的目录和丰富有趣的配图深深吸引住了。里面讲了很多很多有趣的有关基因学的科学知识,它向我们介绍了生物工程里的生命基因、遗传工程是怎么施工的、新克隆时代、永生的细胞、“瘦身”基因、细胞工程等,还介绍了生物工程对人类的影响,例如植物可以用来发电和产生石油、好吃的水果疫苗、人类可以战胜癌症等等。
其中给我印象最深刻的是“复活的木乃伊和猛犸象”,也是我觉得特别有意思的一个章节。它讲了几千年前埃及的木乃伊和地球上早已灭绝的动物猛犸象,我相信大家也会对这一章节很感兴趣,我就来给大家讲讲吧:大家都了解现代的基因克隆技术吧!科学家现在正设想利用木乃伊和猛犸象的一个活细胞来复制出几千年前的埃及人和猛犸象。他们果然在柏林古博物馆找到了仅1周岁古埃及王子的木乃伊,从它身上发现了仍有生命力的细胞,科学家认为,通过细胞核移植,可以在现代妇女体内孕育一个古埃及王子。同样,如果科学家从西伯利亚低温保存的猛犸象遗体上找到了活细胞,也可以复制猛犸象。如果那样真能成功,那么我们地球上灭绝的许多动物就又有可能出现在我们这个世界上了,甚至可以克隆出一大堆恐龙,那将是什么样的情景呀!想着都让人觉得兴奋,不过这些都还在设想阶段呢!
基因学真是太神奇了!我不得不感叹我们这个时代科学技术的发达。我希望科学家们能更多的利用基因学去帮助一个个快要濒临灭绝的动物种群存活,研制出更多的高科技及其产品去造福人类,将我们人类未来的生活引入到一个全新的时代。
复制生命—探索基因世界读后感2
一直以来人类总自认是万物之灵,有着自由意志,可以判断是非善恶,并且我们有着强烈的.愿望将人类社会的价值观强加给自然界。由此产生了诸如勤劳的蜜蜂等童话故事,将我们身边的自然界塑造成天堂的模样,而令人尴尬的食肉动物的存在,注定了大灰狼之类得不到好的名声。即使在今天,人类已经对生态系统的认识有了长足的进步之后,也是如此。
英国生物学家里查德。道金斯所著的《复制生命—探索基因》一书,以现代新综合进化生物学为理论基础,将艰深的专业知识以通俗易懂的方式表述出来,对生命本质——“基因”进行了全新的阐述,以及由此引发的对人本身的重新思考,彻底颠覆了我们梦想中的伊甸园,足以使任何一个渴望认识自然、渴望了解我们自己的读者陷入深深的思考之中。本书所产生的深远影响,对我们的强烈震撼力可以称为此类科普书籍的经典之作。
随着人类基因组工程的展开,“基因”一词也被广大媒体以极大的热情四处传播,逐步从教科书上走入大众的生活领域。确实我们是父母基因的产物,长期以来我们仅仅把基因看成是构建生物机体的一份蓝图,而有意或无意的忽视了它对我们行为的影响。道金斯在《复制生命—探索基因》中提出进化的单元可能既不是物种,也不是群体,甚至也不是个体,而是基因,因为作为选择单元,不仅要求长寿,而且必须能够精确的复制自己。在他的基因中心论中,生命的个体反而成了基因主宰着的“生存机器”。那么什么是基因呢?
《生命科学》
某天我发现了许纯凤的《生命科学》这本书。于是我翻开它,它带我走进了一个神秘的科学王国······
我知道了,46亿年前地球诞生,38亿年前出现了RnA、DnA、蛋白质等生命物质,30亿年前出现了蓝藻类和原始细胞,15亿年前出现真核生物,10亿年前一个细胞的单细胞生物继续进化,5.3年前出现原古动物,4亿前陆地哺乳动物生成,500万人物祖先诞生······我还明白了细胞的分裂形成人类、动物的繁衍、植物的生长;我还知道了在1665年英国的物理学家罗伯特·胡克通过显微镜发现了细胞、德国植物学家奥肯在1805年发表了所有的生物体不仅都由细胞组成而且都是从细胞中产生等科学论文;我还了解了人一生一共有46个染色体、当精子和卵子相遇染色体决定性别的奥秘;我还看到了托马斯·亨特·摩尔根利用果蝇对遗传进行研究突变。
看科学王国的旅游很奇妙吧!这本书不仅让我大开眼界,还让我惊叹生命的神奇,对生命的珍视。我在科学王国等着你哦。
《生命科学》读书笔记2
生命科学,是研究自然界中各种生命现象及其规律的学科,是21世纪的带头学科。生命科学在维持地球生态平衡、保证社会可持续发展、促进人类健康长寿、提倡伦理道德文明等方面将产生非常重要的作用,是当今在全球范围内最受关注的基础自然科学。生命科学在卫生领域,除了药物研制,更让人关注的是改造人的基因组成,人类基因组约含10万~30万个基因,今后10到20年将完成人所有基因在染色体上定位及其破译全部遗传信息,将可从根本上了解各种遗传性疾病、癌症、心脑血管疾病的发病机制和防治途径,改造人的基因将成为增强体质、防治疾病的重要手段。
地球形成于大约45亿年前,生命诞生于38亿年前。目前,大千世界里有超过200万的物种,它们千差万别,却都蕴涵着生命的本质特征:生物化学成分的同一性、生物结构层次的有序性、新陈代谢、生长和发育、繁殖与遗传、应激性与活动性、提高生存能力的适应性等。而生命科学的知识结构主要包括生命科学的概念与研究内容、生命科学研究简史、生命的物质基础与化学组成,生命的基本现象、细胞与细胞工程,生命的新陈代谢,遗传与变异,基因的表达与调控,人体防御体系、生命的`信号与传递,神经原和认识功能、资源与生物多样性、生物与环境、生命的起源与进化,营养与健康,肿瘤与防治,人类的起源与可持续发展,生命科学与现代生物技术、生命科学与农业科学、生命科学与环境科学、生命科学与生物能源、生命科学与现代医学、生命科学与药物的研究与开发、生命科学与海洋生物资源、生命科学与军事生物技术、生物信息学与生物芯片、生命组学与系统生物学,生命伦理与社会决策等内容。
生命科学研究从宏观上可分成三个层次,包括生物学和细胞生物学的核心层次,对多个物种及类群研究的个体生物学层次,以及循环经济、水资源短缺、土地沙漠化、人口激增、环境污染、能源紧张、粮食问题等生物圈层次的问题。多个学科与生命科学密切交叉相互渗透的趋势越来越强,进一步推动了生命科学的进步,如工程学与生命科学结合诞生了基因工程、细胞工程、发酵工程等学科,天文学与生命科学结合产生了宇宙生物学。生命科学深入研究产生分子生物学,分子生物学与其他学科结合又产生了分子遗传学、分子细胞学、分子药学学、分子病理学、分子流行病学等。目前,生命科学正向宏观和微观、最基本和最复杂的两极化发展。
生命科学的研究方法包括观察与描述、生物学实验、生命现象的人工模拟等。生命科学的研究程序包括观察、假设、实验、对假设的进一步修正、得出结论,并在此基础上进一步观察,进入下一个周期,即详细的程序如下:生物学的研究大多从观察开始;在观察中提出问题;根据观察到的现象以及研究者自身的知识与
生命科学发展分为前生物学时期、古典生物学时期、实验生物学时期和分子生物学时期。
前生物学时期,公元16世纪前,众多古人类遗址和尚存的古代科学典籍,动物驯化饲养、对植物栽培等内容,如考古发现,生活在南美洲的厄瓜多尔的印弟安人1.2万年前就已经开始种植西葫芦,畜牛于9000年前起源于非洲,6000年前中亚出现了被人驯服的马匹。20xx年前的诗经记载了动物和植物达600多种,明朝李时珍的《本草纲目》共记载药物1892种,附图1126幅,收入药方11096付。这显示了对与人类生产、生活密切相关的生物进行形态及本性描述是这一时期的主要特征。
古典生物学时期,17世纪至19世纪中期,1665英国人R.Hooke用自制的显微镜首次发现软木中的细胞,1883年德国的T.Schwann阐述动物与植物的基本结构单元都是细胞,标志着生物科学的核心学科细胞学正式诞生,把它列为19世纪自然科学三大发现之一,1859年,C.Darwin出版了巨著《物种起源》,这一时期对各种物种的特性描述已经深入到微观水平。
实验生物学时期,19 世纪中期至20世纪中叶,随着数学、物理学、化学等学科与生物科学的交叉渗透,生命科学领域取得一系列重大成就,如奥地利G.Mendel的植物杂交实验发现了生物遗传规律,法国L.Paster发明了加热灭菌消毒法,创立了微生物学,直接促使医学疫苗的发明和免疫学的建立,美国T.Morgen发现遗传的基本单位——基因,并确立了经典遗传学的分离、连锁和交换三大定律,这一时期科学家通过一系列的实验,不断加快生命科学探索的步伐。
分子生物学时期,20世纪中叶至今,1953年,美国人J.Waston和英国人F.Crick阐明了DNA双螺旋结构,1957年,F.Crick提出了著名了遗传信息流——中心法则,此后,遗传信息由DNA通过RNA传向蛋白质这一“中心法则”的确立以及遗传密码的破译,为基因工程的诞生提供了理论基础。从此,生命科学进入一个快速发展的阶段。1973年人类进行重组DNA成功,开创了基因工程的新时代,转基因水稻、转基因油菜、转基因抗虫棉相继问世,基因工程已成为分子生物科学的带头学科,基因工程药物研制、转基因植物、转基因动物研究成为多国竟相投入的热点。1990年美国Dulbecco首先提出对人类基因组进行全长测序的主张,美国随即批准人类基因组计划。1997年英国的I.Wilmut宣布克隆一只名为“Dolly”的绵羊,随后克隆牛、克隆鼠、克隆猴、相继问世。深入研究生命本质问题,按照人类意愿有计划地改造生物已经成为这个时期的显著特征。



