
宋代邵雍是数理大家,写过一首朗朗上口的数字诗,描写一路的景物,全诗共20个字,把10个数字全用上了:
一去二三里,烟村四五家,
亭台六七座,八九十枝花。
这首诗用数字反映远近、村落、亭台和花,通俗自然,脍炙人口,也是我们小时候可能就听说过的一首诗,让人难忘啊。
明代林和靖写的一首雪梅诗,全诗用表示雪花片数的数量词写成。读后就好像身临雪境,飞下的雪片由少到多,飞入梅林,就难分是雪花还是梅花,妙趣横生。
一片二片三四片,五片六片七八片。
九片十片无数片,飞入梅中都不见。
清代纪晓岚是著名的才子,据说乾隆皇帝南巡时,一天在江上看见一条渔船荡桨而来,就叫纪晓岚以渔为题作诗一首,要求在诗中用上十个“一”字。纪晓岚很快吟出一首:
一篙一橹一渔舟,一个渔翁一钓钩,
一俯一仰一场笑,一人独占一江秋。
无独有偶,清代的'女诗人何佩玉擅长作数字诗,也连用了十个“一”,生动地勾画了一幅高僧晚归图:
一花一柳一点矶,一抹斜阳一鸟飞。
一山一水一中寺,一林黄叶一僧归。
北宋王安石关心民生疾苦,看北宋王朝很多虚设的官员,饱食终日,于是写道:
一窝二窝三四窝,五窝六窝七八窝,
食尽皇家千钟粟,凤凰何少尔何多。
把他们比作麻雀,形象了地讽刺了他们反对变法的丑态。
解放前,法币天天贬值,物价一日数长,一位教师这样描绘饥寒交迫的生活:
一身平价布,两袖粉笔灰。
三餐吃不饱,四季常皱眉。
五更就起床,六堂要你吹。
九天不发饷,十家皆断炊。
下面还有一些大家耳熟能详的数字入诗的佳句:
城阙辅三秦,风烟望五津。
烽火连三月,家书抵万金。
功盖三分国,名成八阵图。
千山鸟飞绝,万径人踪灭。
欲穷千里目,更上一层楼。
七八个星天外,两三点雨山前。
毕竟西湖六月中,风光不与四时同。
三顾频烦天下计,两朝开济老臣心。
飞流直下三千尺,疑是银河落九天。
梅须逊雪三分白,雪却输梅一段香。
两岸猿声啼不住,轻舟已过万重山。
故国三千里,深宫二十年。一声《何满子》,双泪落君前。
两个黄鹂鸣翠柳,一行白鹭上青天。窗含西岭千秋雪,门泊东吴万里船。
坐地日行八万里,巡天遥看一千河。
古体诗是诗歌体裁。从诗句的字数看,有所谓四言诗、五言诗和七言诗和杂言诗等形式。下面是关于数字的古诗的内容,欢迎阅读!
《劝 学》
(唐)颜真卿
三更灯火五更鸡,正是男儿读书时。
黑发不知勤学早,白首方悔读书迟。
山村咏怀
宋代:邵雍
一去二三里,烟村四五家。
亭台六七座,八九十枝花。
《咏雪》
作者:郑板桥(清)
一片两片三四片,五六七八九十片。
千片万片无数片,飞入梅花总不见。
望庐山瀑布
作者:李白
日照香炉生紫烟,遥看瀑布挂前川。
飞流直下三千尺,疑是银河落九天。
咏柳
作者:贺知章
碧玉妆成一树高,万条垂下绿丝绦。
不知细叶谁裁出,二月春风似剪刀。
绝句
作者:杜甫
两个黄鹂鸣翠柳,一行白鹭上青天。
窗含西岭千秋雪,门泊东吴万里船。
利用诗歌表达数学思想、概念的诗歌比较多。例如张景中院士主编的新课程高中数学教材中(该教材是湖南教育出版社新课程标准实验教材),在每一章都有一首诗歌。例如第一章《集合、映射与函数》时,说到:
日落月出花果香,物换星移看沧桑。
因果变化多联系,安得良策破迷茫?
集合奠基说严谨,映射函数叙苍黄。
看图列表论升降,科海扬帆有锦囊。
当到第二章《指数函数、对数函数和幂函数》时,说到:
晨雾茫茫碍交通,蘑菇核云蔽长空;
化石岁月巧推算,文海索句快如风.
指数对数相辉映,立方平方看对称;
解释大千无限事,三族函数建奇功。
在学习完这两章内容后再仔细研读,别有一番感受。
一.问题的提出
次日,忽然见古诗词,慢慢品味里面竟流露出淡淡的数学问题,如:兔同笼鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔。这首古诗中有什么数学问题呢?是否蕴含着什么数学的奥秘呢?
二.分析与探究
这首古诗;兔同笼 鸡兔同笼不知数,三十五头笼中露,看来脚有九十四,几多鸡儿几多兔。就和我们现在的鸡兔同笼问题一样,那么如何去做这鸡兔同笼问题呢?首先应该要理解这首诗,一只兔子四条腿,一只鸡两只脚,这样就可以知道36个头共同的脚是72只,多出来的28只应该是兔子的了,一只兔子多两只,那一半就是兔子的数,28除以2得14只。也就是说这是14只兔子,36-14=22(鸡)
22只鸡44只脚,14只兔56只脚,一共100只脚。
三.问题的拓展
有了这种的理解方法,我得出的公式如下:
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
=鸡的只数
总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
=兔的只数
总只数-兔的只数=鸡的只数
解法3:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
再根据以上思路用方程来解,发现:
解法1(方程):X=总脚数÷2—总头数(X=兔的只数)
总只数—兔的只数=鸡的只数
解法2(方程):X=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数)
总只数—兔的只数=鸡的只数
解法3(方程):X=:(兔的'脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数)
总只数-鸡的只数=兔的只数
四:问题的启示
上面这个古诗求解过程中体验到两种数学思想方法,首先是从特殊到一般、简单到复杂的归纳递推方法,其次是采用假设的思维方法;我深深感到它们绝妙无比。
五:我的感想
从数学的角度对这首古诗的探究,使我获益匪浅。古诗中的数学题让我明白:从特殊到一般、简单到复杂的归纳递推方法,其次是采用假设的思维方法。这两种数学思想方法是解决疑难问题的两把金钥匙,只要你善于思考,学会运用,许多困难都会迎刃而解。
古诗中有数学,生活中无处不存在着数学,数学就像万花筒,充满神奇的力量,有无穷的奥妙,我相信只要你关心她,她就能深深吸引你。
“有两样东西,愈是经常和持久地思考它们,对它们日久弥新和不断增长之魅力以及崇敬之情就愈加充实着心灵,它们就是:我头顶的星空,和我心中的道德定律。”近代数学起源于西方,起源于西方先哲的理性思辨。发展起来的数学又不断参与到人类的社会活动中,与人类共同发展。数学就像一颗大树:她的枝叶向上拓展,不断探索宇宙的深度;她的根须向下延伸,不断探索人类自身的逻辑深度。开头的这句话即是西方最伟大的哲学家(没有之一)——康德的墓志铭,让我们在人类历史上这些最璀璨的群星的照耀下,不断开拓进取!



