
如果有多个接口,UDP广播报文从哪个接口发送
UDP包UDP报4组成,其中每个域各占用2个字节,具体如源端口号目标端口据报长度校验值 UDP协议使用端口号为不同的应用保留其各自的数据传输通道。
UDP和TCP协议正是采用这一机制实现对同一时刻内多项应用同时发送和接收数据的支持。
数据发送一方(可以是客户端或服务器端)将UDP数据报通过源端口发送出去,而数据接收一方则通过目标端口接收数据。
有的网络应用只能使用预先为其预留或注册的静态端口;而另外一些网络应用则可以使用未被注册的动态端口。
因为UDP报头使用两个字节存放端口号,所以端口号的有效范围是从0到65535。
一般来说,大于49151的端口号都代表动态端口。
TCP包 每个tcp都包含源端口号和目标端口号,加上ip头中的源ip和目的ip,唯一确定一个tcp连接。
序号用来标识从tcp发端向tcp收端发送的数据字节流,它表示在这个报文段中的第一个数据字节。
序号字段包含由这个主机选择的该连接的初始序号isn(Initial Sequence Number)。
该主机要发送数据的第一个字节,序号为isn+1,因为syn占用了一个序号。
IP包 IPV4报头有12个必需的字段和可选IP选项字段,位于要发送的数据之前。
如果使用IP层已有的库或其他组件,一般不必考虑报头中的大多数字段,但程序代码需要提供源端和目的端地址。
1、版本(4比特) IP协议版本已经经过多次修订,1981年的RFC0791描述了IPV4,RCF2460中介绍了IPV6。
2、报头长度(4比特) 报头长度是报头数据的长度,以4字节表示,也就是以32字节为单位。
报头长度是可变的。
必需的字段使用20字节(报头长度为5,IP选项字段最多有40个附加字节(报头长度为15)。
3、服务类型(8比特) 该字段给出发送进程建议路由器如何处理报片的方法。
可选择最大可靠性、最小延迟、最大吞吐量和最小开销。
路由器可以忽略这部分。
4、数据报长度(16比特) 该字段是报头长度和数据字节的总和,以字节为单位。
最大长度为65535字节。
5、标识符(16比特) 原是数据的主机为数据报分配一个唯一的数据报标识符。
在数据报传向目的地址时,如果路由器将数据报分为报片,那么每个报片都有相同的数据标识符。
6、标志(3比特)标志字段中有2为与报片有关。
位0:未用。
位1:不是报片。
如果这位是1,则路由器就不会把数据报分片。
路由器会尽可能把数据报传给可一次接收整个数据报的网络;否则,路由器会放弃数据报,并返回 差错报文,表示目的地址不可达。
IP标准要求主机可以接收576字节以内的数据报,因此,如果想把数据报传给未知的主机,并想确认数据报没有因为大小的原 因而被放弃,那么就使用少于或等于576字节的数据。
位2:更多的报片。
如果该位为1,则数据报是一个报片,但不是该分片数据报的最后一个报片;如果该位为0,则数据报没有分片,或者是最后一个报片。
7、报片偏移(13比特) 该字段标识报片在分片数据报中的位置。
其值以8字节为单位,最大为8191字节,对应65528字节的偏移。
例如,将要发送的1024字节分为576和424字节两个报片。
首片的偏移是0,第二片的偏移是72(因为72×8=576)。
8、生存时间(8比特) 如果数据报在合理时间内没有到达目的地,则网络就会放弃它。
生存时间字段确定放弃数据报的时间。
生存时间表示数据报剩余的时间,每个路由器都会将其值减一,或递减需要数理和传递数据报的时间。
实际上,路由器处理和传递数据报的时间一般都小于1S,因此该值没有测量时间,而是测量路由器之间跳跃次数或网段的个数。
发送数据报的计算机设置初始生存时间。
9、协议(8比特) 该字段指定数据报的数据部分所使用的协议,因此IP层知道将接收到的数据报传向何处。
TCP协议为6,UDP协议为17。
10、报头检验和(16比特) 该字端使数据报的接收方只需要检验IP报头中的错误,而不校验数据区的内容或报文。
校验和由报头中的数值计算而得,报头校验和假设为0,以太网帧和TCP报文段以及UDP数据报中的可选项都需要进行报文检错。
11、源IP地址(32比特) 表示数据报的发送方。
12、目的IP地址(32比特) 表示数据报的目的地。
如果有多个接口,UDP广播报文从哪个接口发送
UDP包UDP报4组成,其中每个域各占用2个字节,具体如源端口号目标端口据报长度校验值 UDP协议使用端口号为不同的应用保留其各自的数据传输通道。
UDP和TCP协议正是采用这一机制实现对同一时刻内多项应用同时发送和接收数据的支持。
数据发送一方(可以是客户端或服务器端)将UDP数据报通过源端口发送出去,而数据接收一方则通过目标端口接收数据。
有的网络应用只能使用预先为其预留或注册的静态端口;而另外一些网络应用则可以使用未被注册的动态端口。
因为UDP报头使用两个字节存放端口号,所以端口号的有效范围是从0到65535。
一般来说,大于49151的端口号都代表动态端口。
TCP包 每个tcp都包含源端口号和目标端口号,加上ip头中的源ip和目的ip,唯一确定一个tcp连接。
序号用来标识从tcp发端向tcp收端发送的数据字节流,它表示在这个报文段中的第一个数据字节。
序号字段包含由这个主机选择的该连接的初始序号isn(Initial Sequence Number)。
该主机要发送数据的第一个字节,序号为isn+1,因为syn占用了一个序号。
IP包 IPV4报头有12个必需的字段和可选IP选项字段,位于要发送的数据之前。
如果使用IP层已有的库或其他组件,一般不必考虑报头中的大多数字段,但程序代码需要提供源端和目的端地址。
1、版本(4比特) IP协议版本已经经过多次修订,1981年的RFC0791描述了IPV4,RCF2460中介绍了IPV6。
2、报头长度(4比特) 报头长度是报头数据的长度,以4字节表示,也就是以32字节为单位。
报头长度是可变的。
必需的字段使用20字节(报头长度为5,IP选项字段最多有40个附加字节(报头长度为15)。
3、服务类型(8比特) 该字段给出发送进程建议路由器如何处理报片的方法。
可选择最大可靠性、最小延迟、最大吞吐量和最小开销。
路由器可以忽略这部分。
4、数据报长度(16比特) 该字段是报头长度和数据字节的总和,以字节为单位。
最大长度为65535字节。
5、标识符(16比特) 原是数据的主机为数据报分配一个唯一的数据报标识符。
在数据报传向目的地址时,如果路由器将数据报分为报片,那么每个报片都有相同的数据标识符。
6、标志(3比特)标志字段中有2为与报片有关。
位0:未用。
位1:不是报片。
如果这位是1,则路由器就不会把数据报分片。
路由器会尽可能把数据报传给可一次接收整个数据报的网络;否则,路由器会放弃数据报,并返回 差错报文,表示目的地址不可达。
IP标准要求主机可以接收576字节以内的数据报,因此,如果想把数据报传给未知的主机,并想确认数据报没有因为大小的原 因而被放弃,那么就使用少于或等于576字节的数据。
位2:更多的报片。
如果该位为1,则数据报是一个报片,但不是该分片数据报的最后一个报片;如果该位为0,则数据报没有分片,或者是最后一个报片。
7、报片偏移(13比特) 该字段标识报片在分片数据报中的位置。
其值以8字节为单位,最大为8191字节,对应65528字节的偏移。
例如,将要发送的1024字节分为576和424字节两个报片。
首片的偏移是0,第二片的偏移是72(因为72×8=576)。
8、生存时间(8比特) 如果数据报在合理时间内没有到达目的地,则网络就会放弃它。
生存时间字段确定放弃数据报的时间。
生存时间表示数据报剩余的时间,每个路由器都会将其值减一,或递减需要数理和传递数据报的时间。
实际上,路由器处理和传递数据报的时间一般都小于1S,因此该值没有测量时间,而是测量路由器之间跳跃次数或网段的个数。
发送数据报的计算机设置初始生存时间。
9、协议(8比特) 该字段指定数据报的数据部分所使用的协议,因此IP层知道将接收到的数据报传向何处。
TCP协议为6,UDP协议为17。
10、报头检验和(16比特) 该字端使数据报的接收方只需要检验IP报头中的错误,而不校验数据区的内容或报文。
校验和由报头中的数值计算而得,报头校验和假设为0,以太网帧和TCP报文段以及UDP数据报中的可选项都需要进行报文检错。
11、源IP地址(32比特) 表示数据报的发送方。
12、目的IP地址(32比特) 表示数据报的目的地。
TCP与UDP哪个更好
tcpTCP的可靠保证,是它的三手双向,这一机制保证校验了数据,保他的可靠性。
而UDP就了,udp信息发出后,不验证是否到达对方,所以不可靠。
不过UDP的速度是TCP比不了的,而且UDP的反应速度更快,QQ就是用UDP协议传输的,HTTP是用TCP协议传输的,不用我说什么,自己体验一下就能发现区别了。
再有就是UDP和TCP的目的端口不一样(这句话好象是多余的),而且两个协议不在同一层,TCP在三层,UDP不是在四层就是七层。
TCP\\\/IP协议介绍 TCP\\\/IP的通讯协议 这部分简要介绍一下TCP\\\/IP的内部结构,为讨论与互联网有关的安全问题打下基础。
TCP\\\/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。
确切地说,TCP\\\/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。
TCP\\\/IP整体构架概述 TCP\\\/IP协议并不完全符合OSI的七层参考模型。
传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。
该模型的目的是使各种硬件在相同的层次上相互通信。
这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。
而TCP\\\/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。
这4层分别为: 应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。
传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。
互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。
网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。
TCP\\\/IP中的协议 以下简单介绍TCP\\\/IP中的协议都具备什么样的功能,都是如何工作的: 1. IP 网际协议IP是TCP\\\/IP的心脏,也是网络层中最重要的协议。
IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。
IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。
IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。
高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。
也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。
IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。
对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。
这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。
那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。
2. TCP 如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。
TCP将包排序并进行错误检查,同时实现虚电路间的连接。
TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。
TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。
应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。
面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。
DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。
3.UDP UDP与TCP位于同一层,但对于数据包的顺序错误或重发。
因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。
相对于FTP或Telnet,这些服务需要交换的信息量较小。
使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。
欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。
4.ICMP ICMP与IP位于同一层,它被用来传送IP的的控制信息。
它主要是用来提供有关通向目的地址的路径信息。
ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。
另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。
PING是最常用的基于ICMP的服务。
5. TCP和UDP的端口结构 TCP和UDP服务通常有一个客户\\\/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。
用户使用Telnet客户程序与服务进程建立一个连接。
客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。
因而,这个连接是双工的,可以用来进行读写。
两个系统间的多重Telnet连接是如何相互确认并协调一致呢
TCP或UDP连接唯一地使用每个信息中的如下四项进行确认: 源IP地址 发送包的IP地址。
目的IP地址 接收包的IP地址。
源端口 源系统上的连接的端口。
目的端口 目的系统上的连接的端口。
端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。
一个端口对应一个16比特的数。
服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。
这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。
到底使用UDP还是TCP
在Windows 2000\\\/XP\\\/Server 2003中要查看端口,可以使用NETSTAT命令:“开始>运行”>“cmd”,打开命令提示符窗口。
在命令提示符状态下键入“NETSTAT -a -n”,按下回车键后就可以看到以数字形式显示的TCP和UDP连接的端口号及状态.命令格式:Netstat -a -e -n -o -s -a 表示显示所有活动的TCP连接以及计算机监听的TCP和UDP端口。
-e 表示显示以太网发送和接收的字节数、数据包数等。
-n 表示只以数字形式显示所有活动的TCP连接的地址和端口号。
-o 表示显示活动的TCP连接并包括每个连接的进程ID(PID)。
-s 表示按协议显示各种连接的统计信息,包括端口号。
谁能给我详细讲讲UDP端口
UDPUDP(User Datagram Protocol) 用户数据报协议 用户数据报协议(UDP)是 ISO 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。
UDP 协议基本上是 IP 协议与上层协议的接口。
UDP 协议适用端口分辨运行在同一台设备上的多个应用程序。
由于大多数网络应用程序都在同一台机器上运行,计算机上必须能够确保目的地机器上的软件程序能从源地址机器处获得数据包,以及源计算机能收到正确的回复。
这是通过使用 UDP 的“端口号”完成的。
例如,如果一个工作站希望在工作站 128.1.123.1 上使用域名服务系统,它就会给数据包一个目的地址 128.1.123.1 ,并在 UDP 头插入目标端口号 53 。
源端口号标识了请求域名服务的本地机的应用程序,同时需要将所有由目的站生成的响应包都指定到源主机的这个端口上。
UDP 端口的详细介绍可以参照相关文章。
与 TCP 不同, UDP 并不提供对 IP 协议的可靠机制、流控制以及错误恢复功能等。
由于 UDP 比较简单, UDP 头包含很少的字节,比 TCP 负载消耗少。
UDP 适用于不需要 TCP 可靠机制的情形,比如,当高层协议或应用程序提供错误和流控制功能的时候。
UDP 是传输层协议,服务于很多知名应用层协议,包括网络文件系统(NFS)、简单网络管理协议(SNMP)、域名系统(DNS)以及简单文件传输系统(TFTP)。
协议结构 Source Port — 16位。
源端口是可选字段。
当使用时,它表示发送程序的端口,同时它还被认为是没有其它信息的情况下需要被寻址的答复端口。
如果不使用,设置值为0。
Destination Port — 16位。
目标端口在特殊因特网目标地址的情况下具有意义。
Length — 16位。
该用户数据报的八位长度,包括协议头和数据。
长度最小值为8。
Checksum — 16位。
IP 协议头、UDP 协议头和数据位,最后用0填补的信息假协议头总和。
如果必要的话,可以由两个八位复合而成。
Data — 包含上层数据信息。
NTP默认使用的端口号
NTP默认使用的端口号是UDP123



