欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 学习初中数学新课标心得体会

学习初中数学新课标心得体会

时间:2016-02-18 00:12

初中数学学习体会

学习感想——思路决定出路人的学习是无止境的,只有不断的学习,才能给自己更丰富,更开阔的思路,经过两天的学习,让我感悟到很多事情,都是有两面性的,穷则变,变则通,出路在于变通,当目前的想法不能成功,说明你的想法有可能是错的,或者是由于没有改变自己的思路或者是懒于改变自己的思路或者是根本不想改变自己的思路,成功总有方法,想成功就要找方法,而思考是一切正确策略和方法的起源,思考其实就是问与答的过程,当你做一件事情没有达到目标时,问自己一个为什么

问自己问题出在了哪里,然后自己给出答案,学会反思学会换位思考。

“没有不好的孩子,只有不好的教育”,例如,在课堂中,在一日生活中孩子没有如我们所预想的那样做一些正确的事情,不能达到我们所要求的目标时,我们只能对孩子着急吗

与其对孩子发脾气,不如改变自己的教育观点理念,反思自己为什么,不能懒于改变自己的思路,就要求别人去适应自己的思路,我们何不反思自己从事情的另一个角度开始着手,可能会有意外收获,就像我们经常说的,给孩子机会孩子就会给你惊喜。

从中,我还深刻的理解到一个道理,大凡世界上能做大事的人,都能把小事做细,做好,做好了每件小事逐渐积累就会发生质变,小事就会变成大事,任何一件小事只要你把它做规范了,做到位了,做透了,你就会从中发现机会,找到规律,从而成就大事,也就是说,一件事情我会做了,但做好了吗,做精了吗,一个人无论从事何种职业,都应该尽心尽责

初中数学新课标学习笔记

数学是中小学教育必不可少的基础学科,对发展学生智力,培养学生能力,特别是在培养人的思维方面,具有其它任何一门学科都无法替代的特殊功能。

课程改革,对传统的教学产生了巨大的冲击波。

一言堂变成了群言堂,多了动感、生气与活力,学生在课堂上能畅所欲言,发表自己的独到见解,学生的思维可以充分得到放飞,能力可以充分得到培养。

作为学习活动的组织者、引导者、合作者的教师,怎样让新课标理念指导自己的教学呢,本人在学习新课标和教学实践中有以下几点尝试。

一、要激发学生学习数学兴趣。

兴趣是提高学生自觉性和积极性的直接因素。

爱因斯坦曾经说过:兴趣是最好的老师。

兴趣是人对客观事物产生的一种积极的认识倾向,它推动人去探索新的知识,发展新的能力,学生如果对数学有浓厚的兴趣,就会产生强烈的求知欲望,表现出对数学学习的一种特殊情感,学习起来乐此不疲,这就是所谓的乐学之下无负担。

那么如何激发学生的学习兴趣呢

首先、创设情境,点燃学生学习兴趣的火花。

俗话说:良好的开端是成功的一半,一堂课起始阶段的成功与否,在很大程度上关系到这堂课的成败。

教师要根据教材内容和学生心理及年龄特征,上课一开始就给学生创设情境,将学生带入情境之中,使之产生好奇心和求知欲,使学生进入最佳学习状态。

其次、把空间留给学生,激发兴趣。

活动教学的理念作为新课程标准大力倡导的教学原则,已经走进了中学数学课堂,让学生自行探究、研讨是体现主体性教学思想的最佳教学模式。

教师要充分利用数学活动课的优势,对学生及时进行学习兴趣、学习动机的引导和强化。

使学生在成功后有了学习兴趣,在失败时能更加明确学习目标,强化学习动机。

二、培养学生自主学习的能力。

当今世界科学技术日新月异,知识的更新以几何级数激增。

这些知识、技术仅靠课堂或老师的传授显然是远远不够的。

这就需要学生有较强的自学能力。

知识可能被遗忘,但能力却伴随你终身。

如果一个学生有较强的自学能力,就可以扩大知识面,并增强自身的技术和技能。

数学学科所具有的思考性、知识的发散性和思想的延伸性,要求学生必须充分利用自学这种学习方法。

但自学是一种高层次的学习能力,它不是人与生俱来的,需要教师后天的培养和学生自身的努自学是一种自主、探究、发散式的学习方法,它会使学生更能掌握和理解数学的真谛。

教师在培养学生自学数学能力时,一方面要对学生说明进行自学数学的意义,另一方面要让学生在数学学习中,获得成功的体验,以增强自学数学的兴趣。

所以我们对学生自我探究式的自学一定要高度重视,并进行行之有效的训练。

通过几年的教学实践,我深深体会到,指导学生自学是学生自主发展的重要环节,又是个循序渐进的漫长过程,只有在平时课中坚持这种能力的培养,使学生的学习获得事半功倍的学习效果。

三、让数学教学生活化。

《数学课程标准》中指出:学生能够认识到数学存在于现实生活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。

同时,新课程标准中还多次强调:教学中,应注重所学内容与现实生活的密切联系,并对此做了具体细致的阐述。

那么,教学活动中我们如何让生活走进数学,让数学服务于生活呢

第一、感受数学,数学问题生活化。

 生活本身就是一个巨大的数学课堂,生活数学课堂中,再现了数学知识与生活的紧密联系,使数学教学更具活力。

新的课程标准地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象。

在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系数学无处不在,生活处处有数学。

从而充分调动学生学习数学知识的积极性,激发学生的探索欲望。

第二、探究生活问题,让生活数学化,体现数学知识的生活回归。

我们的数学教学除了让学生从生活中抽象出数学知识,还应将数学知识运用于生活中,并学会运用数学的思维去解决生活中实际的问题,增强应用数学的意识。

因此,教师在教学中要善于捕捉生活情景,让学生有综合运用知识解决实际问题的真实体验,从而体现了数学学习的价值。

这就是数学的魅力。

新时代的进步,促进着教育的新形势,作为新时代的教学同样也要求教师能善于利用新课标。

课程改革的核心环节是课程实施,而课程实施的基本途径是课堂教学。

只有教师真正改变多年来习以为常的教学方式,工作方式,才能稳健地推进课程改革。

教师只有不断学习先进的教育教学理论,不断反思自己的课堂教学,才能真正走进新课程。

初中数学学习的《课程标准》

第一部分 前 言 数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域。

研究方式和应用范围等方面得到了空前的拓展。

数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,伺时为人们交流信息提供了一种有效、简捷的手段。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。

它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

一、基本理念 1、义务教育阶段的数学课程应突出体现基础性。

普及性和发展性,使数学教育面向全体学生,实现。

——人人学有价值的数学; ——人人都能获得必需的数学; ——不同的人在数学上得到不同的发展。

2、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

3、学生的数学学习内容应当是规实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。

内容的呈现应采用不同的表达方式,以满足多样化的学习需求。

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

由于学生所处的文化环境、家庭背景和自身思维方式的不同、学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

4、数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

5、评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。

对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平。

更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。

6、现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响、数学课程的设计与实施应重视运用现代信息技术、特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。

二、设计思路 (一)关于学段 为了体现义务教育阶段数学课程的整体性,(全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段。

第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。

(二)关于目标 根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述。

《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性月标动词,从而更好地体现了(标准)对学生在数学思考、解决问题以及情感与态度等方面的要求。

知识技能目标 了解 (认识) 能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出来这一对象。

理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。

掌握 能在理解的基础上,把对象运用到新的情境中。

灵活应用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。

过程性目标 经历(感受) 在特定的数学活动中,获得一些初步的经验。

体验(体会) 参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。

探索 主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。

(三)关于学习内容 在各个学段中,《标准》安书了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个学习领域。

课程内容的学习,强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念、以及应用意识与推理能力。

数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。

符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。

空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化。

能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系。

能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。

统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。

应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。

推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。

为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。

同时,《标准》并不规定内容的呈现顺序和形式,教材可以有多种编排方式。

(四)关于实施建议 《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议。

供有关人员参考,以保证《标准》的顺利实施。

为了解释与说明相应的课程目标或课程实施建议,《标准》还提供了一些案例,供参考。

第二部分 课程目标 一、总体目标 通过义务教育阶段的数学学习,学生能够: ●获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能; ●初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识; ●体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心; ●具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。

具体阐述如下: 知识与技能 ●经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。

●经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题。

●经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题。

数学思考 ●经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。

●丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

●经历运用数据描述信息、作出推断的过程、发展统计观念。

●经历观察、实验、猜想。

证明等数学活动过程,发展合情推理能力和初 步的演绎推理能力、能有条理地、清晰地阐述自己的观点。

解决问题 ●初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识 和技能解决问题,发展应用意识。

●形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践 能力与创新精神。

●学会与人合作,并能与他人交流思维的过程和结果。

●初步形成评价与反思的意识。

情感与态度 ●能积极参与数学学习活动,对数学有好奇心与求知欲。

●在数学学习活动中获得成功的体验。

锻炼克服困难的意志,建立自信心。

●初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

●形成实事求是的态度以及进行质疑和独立思考的习惯。

以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的。

其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。

二、学段目标 第三学段(7~9年级) 知识与技能 ●经历从日常生活中抽象出数的过程,认识万以内的数、小数、简单给分数和常见的量;了解四则运算的意义,掌握必要的运算(包括估算)技能。

●经历直观认识简单几何体和平面图形的过程,了解简单几何体和平面图形,感受平移、旋转、对称现象,能初步描述物体的相对位置、获得初步的测量(包括估测)、识图、作图等技能。

●对数据的收集、整理、描述和分析过程有所体验、掌握一些简单的数据处理技能;初步感受不确定现象。

●经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分数、负数的意 义。

掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方程表示简单的数量关系,会解简单的方程。

●经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形的基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图、作图等技能。

●经历收集、整理、描述和分析数据的过程,掌握一些数据处 理技能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。

●经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。

●经历探索物体与图形基本性质、变换、位置关系的过程,掌握三角形、四边形、圆的基本性质以及平移、旋转、轴对称、相似等的基本性质,初步认识投影与视图、掌握基本的识图、作图等技能;体会证明的必要性、能证明三角形和四边形的基本性质,掌握基本的推理技能。

●从事收集、描述、分析数据,作出判断并进行交流的活动,感受抽样的必要性,体会用样本估计总体的思想,掌握必要的数据处理技能;进一步丰富对概率的认识,知道频率与概率的关系,会计算一些事件发生的概率。

数学思考 ●能运用生活经验,对有关的数字信息作出解释,并初步 学会用具体的数描述现实世界中的简单现象。

●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。

●在教师的帮助下,初步学会选择有用 信息进行简单的归纳与类比。

●在解决问题过程中,能进行简单的、有条理的思考。

●能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描述并解决现实世界中的简单问题。

●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。

●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。

●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。

●能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数刻画事物间的相互关系。

●在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉。

●能收集、选择、处理数学信息、并作出合理的推断或大胆的猜测。

●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想。

●体会证明的必要性。

发展初步的演绎推理能力。

解决问题 ●能在教师指导下,从日常生活中发现并提出简单的数学问题。

●了解同一问题可以有不同的解决办法。

●有与同伴合作解决问题的体验。

●初步学会表达解决问题的大致过程和结果。

●能从现实生活中发现并提出简单的数学问题。

●能探索出解决问题的有效方法、并试图寻找其他方法。

●能借助计算器解决问题。

●在解决问题的活动中,初步学会与他人合作。

●能表达解决问题的过程,并尝试解释所得的结果。

●具有回顾与分析解决问题过程的意识。

●能结合具体情境发现并提出数学问题。

●尝试从不同角度寻求解决问题的方法并能有效地解决问题,尝试评价不同方法之间的差异。

●体会在解决问题的过程中与他人合作的重要性。

●能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性。

●通过对解决问题过程的反思,获得解决问题的经验。

情感与态度 ●在他人的鼓励与帮助下,对身边与数学有关的某些事物 有好奇心,能够积极参与生动、直观的数学活动。

●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。

●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系。

●经历观察、操作、归纳等学习数学的过程,感受数学思 考过程的合理性。

●在他人的指导下,能够发现数学活动中的错误并及时改正。

●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。

●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不 断的进步。

●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。

●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战 性,感受数学思考过程的条理性和数学结论的确定性。

●对不懂的地方或不同的观点有提出疑问的意识、并愿意对数学问题进行讨论,发现错误能及时改正。

●乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。

●敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。

●体验数、符号和图形是有效地描述现实世界的重要手段、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。

●认识通过观察、实验、归纳、类比、推断可以获得数学猜想体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。

●在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。

数学教师培训学习心得体会5篇

数学教师培训学习心得体会5篇----WORD文档,下载后可编辑修改----  数学教师培训学习心得体会(1)  我有机会参加了初中数学新课程培训,使我受益非浅,对新课程改革也有一些心得体会。

教育改革是科学的,应该按照科学规律办事,否则要受到规律的惩罚。

教学要体现课程改革的基本理念,在教学中充分考虑数学的学科特点,初中学生的心理特点,不同水平、不同爱好、学生的学习需求,运用多种教学方法和手段,引导学生积极主动地学习,把握数学的基础知识和基本技能以及它们所体现的思想方法,发展应用意识和创新意识,对数学教学有较为全面的熟悉,提高数学素养,形成积极的情感态度,为未来发展进一步学习打好基础。

  通过学习,我体会到认识到要上好数学课,我们教师非下苦工夫不可。

为了适应数学新课程改革需要,尽快提高学生的数学水平,达到新课标的要求,我在新学期里应该努力做到以下几点: 一.制定学习计法  数学学习切不可盲目,一定要制定一个切实可行、周密有效的计划。

同时老师要给学生明确各阶段的学习目标,并制定相应的措施来保证目标的实施,要加大督促检查的力度,并在此基础上进行总结。

在教学过程中,应注意思想教育与知识教学互相渗透,寓思想素质教育于知识教育之中,如:向学生讲述中国经济的迅猛发展急需大量的外语人才、北京奥运会的举办更需要更多的人会讲数学等,让学生认识到学数学的重要性,鼓励学生树立远大的理想,努力学好数学二、

数学教研学习心得体会

数学教研学习心得体会我校数学研组组织全体数学教师进行课程标准的学习,并要求教师们在平时的课堂教学中将新课标落到实处。

数学教研活动让我受益匪浅,体会颇深。

一、提高自身的专业素养。

本来我认为我们每一个数学教师都有足够的能力去教好我们的小学数学课程。

但是通过教研活动,我觉得这远远不够。

人无完人,我们还要不断地学习,不断地丰富自己。

对于我来说,我觉得我还有很多东西需要加强。

如提高口算能力,驾驭课堂的能力等等。

只有这样才能更好的完成教育教学工作。

二、不断完善课堂教学。

应该说每一次数学教研活动,我们都会从中汲取很多好的教学方法。

也就是说,很多数学老师在平日繁重的教学过程中,都在不断地的学习,琢磨,不断地完善自己的课堂教学,从而不断地提高课堂教学效率。

所以,虽然我们的课本不变,但是我们的数学教学不是一层不变的。

我们需要不断地改变、完善。

精心设计课堂活动,注重实效。

在教学中我们都追求一个目标——让学生学会知识并学会运用知识,感受学习数学的乐趣,不能只搞花样,而没有实效。

三、重视在课堂教学这个环节上,首先以学生为主体。

学生才是学习的主人,教师的角色已经发生转变,转变成了学习的组织者、引导者和辅助者。

因此我们作为教师要从教学理念上发生根本性的改变,主要以学生为主体,可以让学生小组合作。

自主学习,从某种意义上讲,让学生真正成为学习的主人。

当然课堂教学的方式也有很多种,我们要尊重学生个人,让他们在课堂这

数学教学心得体会11篇

数学教学心得体会11篇篇一小学六年级学生经过两个学段数学生活的体验和感悟,初步形成了“三维目标”。

但头脑中的数学知识仍处于原始积累阶段,较为零乱无序,尚未构筑起清晰的网络结构。

在实际应用时渴望及时准确地反馈、重现。

这时帮助学生对所有数学知识回眸,显得十分重要。

能满足学生学习的积极“心理向往”,对已有的知识再学习,既有利于知识的系统形成,又有利于对知识的进一步升华。

我校六年级数学教研组,通过集体备课、座谈讨论,将教材编排体系和相关的教辅资料分类整理,根据学生的学习情况,就实施有效复习进一步提高数学质量为话题,在优化复习时间、复习策略、复习方法、效果检测方面作出有益探索。

一、归类整理,穿珠成线本册教材总复习共有整数和小数、简易方程、分数和百分数、量的计量、几何初步知识、比和比例、简单的统计七大知识板块。

我们根据《新课程标准》要求,先分类复习,再综合练习,将相关知识点安排在每个课时中,帮助学生对数学知识在脑海中重组,构建正态分布图。

按单元编写每个课时教案时做到精选习题,精讲多练;精心预设,精彩生成;及时巩固,狠抓课时目标达成工作。

也就是条块分割,各个击破,实现习题引领——概念重现——新题探讨——生活感悟应用的良性循环。

三、兼顾差异,因材施教我们的期盼:第一、要让学生对数学感兴趣,首先教师务必对自己所教学科感兴趣,自然就带动了学生上数学课的兴趣。

这就要求教师作一名用心的教师,利用一切可利用的

如何进行初中数学试题的命题学习心得

一、内容系统《课程标准》将初中阶段的内容和要求划分为5个方面,对于各学段的的学习内容提出了详细的要求及活动建议。

可概括为:数与运算——分数及其运算,有理数及其运算,实数及其运算方程与代数——一次方程与一次不等式,整式与分式,一元二次方程,二次根式,简单的代数方程图形与几何——直观几何,实验几何,论证几何,函数与分析——函数概念,正、反比例函数,一次函数,二次函数数据处理与概率统计——概率问题,统计初步知识二、内容变化要点总体而言,《课程标准》继承了过去教材内容结构的特点,又尽量地弥补不足,构造了新的初中数学教材内容体系。

主要变化有:1、基于计算机(器)的应用,删简用纸笔进行繁复的数值计算的内容,削减孤立的加、减、乘、除、乘方、开方的繁复演练;2、精简关于式的运算、变形、求值的内容和单纯解方程(组)训练的内容;削减繁杂的求函数定义域、单纯求函数值和用描点法画复杂函数图象的内容。

3、强调通性通法,对解一元一次、二次方程有分层次要求,第一次注重利用通性探索解法,第二次注重方程求解和应用,基本形成方程理论。

4、精炼实验几何内容,加强论证几何与实验几何的有机整合,展现“实验—归纳—猜测—论证”的过程,控制论证几何的难度。

5、从数学知识整合和学生发展需要着眼,引进平面向量加强线性运算,提前渗透概率统计初步知识。

三、教材编写设计教材内容编排: 混合编排,有序展开,内容呈现方式:情境导入,活动穿插,内容处理要求:直观引进,说理明白,四、新课程标准也对我们教师的课堂教学提出了更新的要求,需要我们认真实践,不断总结。

1、 注重概念的形成过程。

从实践情况来看,数学概念的教学相比其他内容来讲难度要更大一些。

每一个数学概念都有其产生、形成并不断完善的过程,在教学中如何扎扎实实地引导学生完成概念形成的每一个步骤,而不仅仅是在字面上逐字逐句地再现概念,如果没有经历概念形成的全过程,学生往往很难全面正确地理解概念,很容易造成对概念的片面、孤立甚至是错误的理解。

具体做法可以通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论逐步形成的过程,比如在讲无理数的概念时,要让学生在问题的引导下开展探索活动,经历认识过程,从中感知无限不循环小数的存在性,感受引入新数的必要性,体会理性思维的精神,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。

2、 数学中有许多问题都具有生活背景和意义,这需要教师“沉入”教材“细细揣摩”,在教学中发掘问题的内在联系,抽象问题的本质,进而用数学语言(符号)来表达问题的实质。

比如“有序数对”的提出就来源于生活,可设计相关的活动,让学生获得这方面的经验,感受数学与生活的联系,当然,还必须进行数学的想象和理性的思考,这样学生学数学,对数学本性会有更深的认识。

3、 在解题过程中要让学生领悟、提炼、概括出数学思想方法。

又如在“平面直角坐标系”这一章中,就可以贯穿数形结合的思想,如点与坐标、两点间距离公式、直线的代数表示形式、用坐标变化描述点的运动等都表明了数与形之间的联系。

当然初中数学中所蕴涵的思想方法也是很丰富的,任何一个数学思想也不是在一次教学活动中就能落实到位的,有一个逐步渗透、贯彻、落实、领会的长期的过程。

4、 培养学生对知识的迁移能力,通过解题后的反思,让学生“领悟”:数学问题的背景可以千变万化,而其中运用的数学思想方法往往是相通的。

学习数学重在掌握这种具有普遍意义和具有迁移价值的、能反映数学本质的“策略性”知识,注重问题间的类比,使解题反思成为自觉的行动,这样才能达到举一反三、有例及类、解一题通一片的目的。

你对初中数学新课程标准感受最深的几点是什么

我们都知道,人脑最主要的功能是思维,而数学恰好是培养人的思维能力的一门学科。

一颗会思维的头脑是金不换的,它使你在纷繁复杂的世事面前不会迷失自我,它使你能够有条理地处理复杂的问题而显示出你的智慧与力量。

学习是我们大家自己的事,它不应该需要家长、老师逼迫,因为内因材起决定性作用。

如果你自己不想学,别人再怎么逼迫你,结果又能怎样呢

我觉得我们大家学习缺乏主动性,缺乏积极性,缺乏钻研,缺乏毅力,缺乏恒心。

有时候,我甚至觉得我们有的同学把学习当成了负担,当成了任务。

这样的态度,怎么可能能够提高学习成绩呢

不是有句话说“态度决定一切”吗

我觉得我们大家的学习态度对于学习成绩的提高是非常关键的。

那么,学好数学是不是很难呢

现在让你们再回去学习小学数学,会有困难吗

当然没有。

这就对了。

一方面,是因为小学数学确实不难;另一方面,你们现在是初中学生了,站在了人生的又一个高度,你们是用俯视(也可能是藐视)的眼光看待你们学过的小学数学内容,首先在心理上你就是一个胜利者。

其实,我们学习数学就需要这样一种心理。

不妨设想一下,假如你是高中学生,你又会如何看待初中数学的内容呢

世上无难事,只怕有心人。

进入中学,要尽快适应初中数学的教学,要在理解上下功夫。

数学是最讲理的一门学科,数学语言又是最严密的语言。

要力求改变被动学习的现状,积极主动地去学习,尽快把学习成绩赶上去。

根据我多年的教学经验,我认为同学们掌握正确的数学思想和方法是至关重要的,是事半功倍的关键所在。

所谓“数学学习,一步跟不上,则步步跟不上”,是不是说反正你已拉下了好多内容没有学会,就学不好新知识了呢

完全不是这么回事。

我经常给同学们讲:你们学习好的希望只有两个,一是课堂,二是你自己。

课堂上要专心听讲,听不懂的地方,那是因为涉及到这个知识点的旧知识你没学好,以至于你的思维在某一个地方卡住了,这时你要做的只是把以前和这个知识点有关的知识好好补一补。

其实最好的方法是养成预习的好习惯,提前预习新课,发现问题,认真思索问题的原因,看看是不是因为过去某个知识点没有掌握的缘故,缺什么补什么,这样就可以保证新课能听懂了。

当然,人无毅力,将一事无成,如果你自己没有解决问题的毅力和决心,那是谁也没有办法的,所谓天作孽,犹可活,自作孽,不可活,就是这个道理。

我觉得学习数学,要以教科书为根据,做到“四个认真”,即:认真预习、认真听课、认真复习、认真做题。

预习时要做到“五要”:①要用波浪线划出重点;②要将公式及结论做记号;③要在看不懂、有疑问的地方用铅笔画问号;④要将简单习题的答案、解题要点写在后面;⑤如果定义、定理中的条件不止一个,就要把条件编上号码。

认真预习后再去听课,比不预习要好得多。

听课后,在做习题前,还要进行复习,检查书上还有哪些文字看不懂,要认真想,都想明白了,再开始做题。

通过做题,可以对学过的知识加深记忆。

下面,我再就如何学好数学做一下具体讲解,希望对大家有所帮助。

一、杜绝负面的自我暗示,把自信贯穿于解题过程的始终。

首先,要对数学学习不要抱有放弃的想法。

有些同学认为数学差一点没关系,只要在其他科目上多用功就可以把总分补回来,这种想法是非常错误的。

教育界有一个“木桶原理”:一只木桶盛水量的多少取决于它最短的一块木板。

无论是中考还是高考,只有各科全面发展才能取得好成绩。

其次,要杜绝负面的自我暗示。

我们每年都会有许许多多的考试,不可能每一次都取得自己理想的成绩。

在失败的时候不要有“我肯定没希望了”、“我是学不好了”这样的暗示。

相反地,要对自己始终充满信心,要相信只要自己努力,最终成功会来到自己的身边。

在平常学习过程中,许多同学自我感觉掌握得很好,而一做题,却往往做不出来。

老师稍微点拔一下,却又马上豁然开朗。

也就是说,这些题并不是绝对做不出来。

只要认真地去思考,通过分析、综合,运用各种数学思想和方法,去比比画画、写写算算,经过迂回曲折的推理或演算,就能逐渐发现题目的条件和结论之间的本质联系。

自信是成功的秘诀,这并不是一句空话。

面对稍为复杂一点的题,要充满自信,要知道,这些题目一般情况下不会超出自己的知识范畴,是能够用自己所学过的知识把它解出来的。

要敢于去思考,并善于去思考,这是一种很重要的思维品质。

具体解题时,一定要认真审题,正确区分条件和结论,并抓住两个主要环节:一是紧紧抓住这一道题和一类题之间的共性,想想这一类题的一般思路和一般解法;二是紧紧抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。

选择一个或几个条件作为解题的突破口,看由这些条件能得出什么过渡结论,得出的越多越好,然后筛选出有用的结论,进一步进行推理或演算。

这就是老师常给同学们讲的:“聪明的同学是一类一类地学,不聪明的同学是一道一道地学”。

要知道,题海无边,只有举一反三,触类旁通,才能跳出题海,领会数学学习的奥妙。

二、仔细看书,弄懂数学语言;认真听课,掌握思维方法。

不爱读数学教科书,是中学生的“通病”。

数学教科书是用数学语言写它成包括文字语言、符号语言、图形语言。

它语言简洁、逻辑性强、内涵丰富、含义深刻,因而看数学教科书切不可浮光掠影,一目十行。

数学概念、定义、定理等都用文字语言表述,看书时务必留心。

符号语言有丰富的内涵,要写得出,辩得清、记得牢。

读符号语言,要说得出它的涵义,辩得明它的特征。

图形语言既能反映元素的相对位置,又是数量关系的直接反映。

因而观看几何图形时要读懂隐藏在图形元素之间的内在联系及数量关系;而观看图像,要从其形状窥视出函数的性质。

如果课前、课后阅读数学书能达到上述要求,学数学也就入门了;若由此养成读书的良好习惯,提高成绩则指日可待。

听课要全神贯注,随着老师的讲解积极思维。

预习时似懂非懂的概念弄明白了么

疑团化解了么

老师口授的真知灼见、补充的例题、精彩的解法,要抓紧记录下来。

写好听课笔记,不但留下一份宝贵的资料,而且也能促使自己注意力集中。

记笔记别丢了“西瓜”,也就是说要不影响听课的效果。

有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而有些得不偿失。

听课时还要做到不断生疑、质疑,敢于提问、答问。

要想想老师的讲解是否完整无误,解法是否严谨无瑕。

板书的范例如果懂了,就应思谋新的解法;如果有疑点就应大胆质疑。

争着回答问题绝不是“图表现”,而是阐述自己的见解,提高自己的口头表达能力。

即使自己回答错了,将问题暴露后,也便于订证。

听课最忌盲从,随波逐流,人云亦云,不懂装懂。

无论是中考还是高考,数学试卷中大部分的题目都是基础题,只要把这些基础题做好,分数便不会低了。

要想做好基础题,平时上课时的听课效率便显得格外重要。

一般来说,丰富经验的老师上课时(尤其是复习阶段)的内容可谓是精华,认真听讲45分钟要比自己在家复习两个小时还要有效。

三、独立钻研,学会归纳总结;用好参考书,拓展个人视野.养成良好的独立钻研学习的习惯必须做到:①按时完成作业,巩固所学知识。

作业惟有按时完成,才能得以巩固知识,尽量减少遗忘。

而在完成作业的过程中,将增大知识复现率,促进自己的思考力,发挥解决问题的创造力。

善于学习的同学还应注意作业的保洁与收藏,因为这既是珍视自己的劳动成果,也是很好的复习资料。

②适时复习功课,形成知识网络。

章节复习、单元复习、迎考复习等是数学学习不可或缺的一部份,它有承前启后的作用。

复习时应按照一定的系统归纳总结知识,总结方法,形成数学的“经纬网”。

这里的“经”指的是数学的各个分支的知识;“纬”指的是相同的数学方法在不同分支中的应用。

要想学好数学就必须织好数学的“经纬网”。

③应注重书写的规范化。

数学学科是一门专业性很强的学科,它对表达、叙述的过程,符号使用的规定都有严格的要求。

因而在做练习、作业、考试时书写都应规范化。

④运用所学知识,不断开拓创新。

数学有很强的联贯性,新旧知识之间并没有不可逾越的鸿沟。

因此借书本知识,进行联想,不但可以增强钻研兴趣,而且能培养自己的创造性思维能力。

在选择参考书方面可以听一下老师的意见。

一般来说,老师会根据自己的教学方式和进度给出一定的建议,数量基本在1—2本左右,不要太多。

在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好。

做题的时候要多做基础题,并且要定好时间,这样可以提高解题速度。

在考前冲刺阶段要保证1—2天做一套试卷来保持状态。

最重要的是,要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握。

在这里有个小建议:在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习。

四、记住必要的基础知识是熟练解题的关键。

有的同学认为,只有语文、英语、政治、历史、地理、生物等学科才需要记忆,而数学靠的是运算、推理和分析,是不需要记忆的。

这种认识是大错特错的。

“博闻强记”是做学问的不二法门。

不记住必要的数学基础知识,你的数学思维的空间就会越来越窄,势必让你的数学学习走进死胡同。

例如,不记住小学的 “九九乘法口诀表”,你能顺利地进行乘法运算吗

尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81 就太不合算了。

而用“九九八十一”求出结果就方便多了。

又如,你在解方程2x2+3x-1=0时,如果你不记住一元二次方程的求根公式 ,你只能用比较繁琐的配方法一步步去推理。

另外,这个公式又是研究一元二次方程根与系数关系、二次函数、一元二次不等式等知识的基础,没有这个公式作基础,这些知识的学习只能陷于进退维谷的地步。

其实,数学学习更像游戏,例如,下中国象棋,如果你不记住马走日,象走田,炮打隔一位等游戏规则,你如何能下好中国象棋

这些游戏规则就好像数学学习中的基础知识。

九年义务教育初级中学数学新课程标准》对初中数学中的基础知识作这样的描述:“初中数学中的基础知识包括初中代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。

”数学的定义、法则、性质、公式、公理、定理等一定要记熟,要能背诵,朗朗上口。

我们常说要在理解的基础上去记忆。

但有些基础知识,如定义,是没有什么道理好讲的。

如一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1,未知数的系数不能为0的方程叫做一元一次方程。

在这个定义中,为什么只含有一个未知数而不是两个、三个,为什么未知数的最高次数是1而不是2或者3,为什么未知数的系数不能为0等,这些问题是没有什么价值的,或者说,定义只不过是对某种事物或现象的一种规定的或固有的含义。

而有些基础知识,如法则、公式、定理等,不但要知其然,还要知其所以然。

如平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补等,不但要记住,还要能够运用所学知识说明平行的两直线为什么有这样的性质。

这就是我们说的在理解的基础上去记忆。

在学习过程中,难免有一些暂时不理解的基础知识,在这种情况下,即使死记硬背也要记住,记住后,在后绪的学习过程中再去逐步理解。

另外,一些重要的数学方法,数学思想也是需要记住的。

只有这样,你在解数学题的过程中才能得心应手,从而体验到数学的美学价值,培养起学好数学的信心。

五、讲“方法”联系“思想”,以“思想”指导“方法”,两者相得益彰。

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识,是属于数学观念一类的东西,比较抽象。

所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映,它是实施数学思想的手段。

数学思想是数学的灵魂,数学方法是数学的行为。

运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。

若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

  在初中数学的学习中,要求了解的数学思想有:方程函数的思想、数形结合的思想、转化的思想、分类讨论的思想、隐含条件的思想、整体代换的思想、类比的思想等。

要求“了解”的方法有:分类法、类比法、反证法;要求“理解”或“会运用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法、特值法等。

其实思想和方法是不能截然分开的,初中数学中用到的各种方法都体现着一定的思想,而数学思想又是对方法的理性认识。

因此,通过对数学方法的理解和应用以达到对数学思想的了解,是使思想与方法得到交融的有效方法。

在数学学习的过程中,一定要全面渗透数学思想与方法,学习了一个知识点或做了一道题,要认真思考一下,用到了哪些数学思想与方法。

数学思想与方法虽然说法各异,但毕竟是有限的,正确运用数学思想与方法学习数学或解题,有利于对知识进行比较归类,只有这样,才能把所学知识学得系统,学得灵活,才能把所学的知识真正纳入到你的知识结构中去,变成自己的财富。

另外,由于数学思想的抽象性,数学方法虽然比较具体,但方法本身就是科学,是一种更为重要的知识,还是有一定难度的,所以,在刚接触时,难免理不出头绪,这是一种正常现象,不用产生惧怕心理。

特别是数学思想,是一个逐渐渗透的过程,要在循序渐进的学习过程中结合具体的数学知识或题目去理解。

如在学习有理数、三角形、四边形、圆周角和弦切角定理的证明、一元二次方程求根公式的推导等知识时,会涉及到分类讨论的思想。

分类讨论思想的原则是:标准统一、不重不漏。

它的优点是具有明显的逻辑性特点,能很好地训练一个人思维的条理性和概括性。

方程的思想实现了由小学的算术法向初中代数法的转化,这是数学思想的一个实质性飞跃。

方程的思想是指对于数学问题中的未知量和已知量之间的关系,用构建方程的方法去解决。

我们会发现,许多问题只要借助列方程的方法去解决,往往使得问题迎刃而解。

数形结合的思想有利于把抽象的知识形象化。

在初中数学的学习中,“数”与“形”是密不可分的,如借助数轴能很好地理解有理数的有关概念和运算,许多列方程解应用题的题目通过题意画出图形能容易地找出各量之间的相等关系,函数问题等就更离不开图象了。

往往借助图象能使问题明朗化,容易找到问题的关键所在,从而解决问题。

转化的思想具体表现为从未知到已知的转化、一般到特殊的转化等。

这些数学思想与方法,也会贯穿在老师教学的过程中,在课堂上要注意专心听讲,向老师学习,向课堂学习。

布鲁纳指出:掌握数学思想方法可以使数学更容易理解和记忆。

充分说明了数学思想与方法的重要性。

六、形成良好的思维品质是理解数学问题的基础。

  数学,作为培养人的思维能力的一门学科,以其理性的思考而引人入胜。

它不像游山观景,以其迷人的景色让人赏心悦目,流连忘返。

数学学习,是通过思考与反思去研究事物的空间形式和数量关系,让事物的空间形式与数量关系呈现出来。

只有形成良好的思维品质,以良好的思维品质这把利刃拔开事物的表象,才能“看”到事物的本质。

  那么什么是良好的思维品质呢

我们以生活中“串门”这种现象为例来说明。

许多人都有这样的生活体验,让别人带着去某人家串门,去了一次,两次,也可能是多次。

有一天你不得不自己去某人家串门。

当你走到某人家附近时,面对林立的整齐划一的建筑群,你茫然失措了,不知道某人家到底在哪儿。

  在学习过程中,我们就经常出现这样的现象。

在课堂上,老师讲得头头是道,同学们听得只点头,感觉明白至极。

而一让同学们自己做题,又不知从何入手了。

主要原因就在于同学们没有对所学的知识进行深入的思考,去理解所学知识的本质。

就像串门,每次去某人家的时候,我们就应该对某人家周围的地理环境,特别是有什么特殊的标志进行记忆一样。

要理解我们所学的知识有什么特点,有哪些内容是需要记住的,特别是这一节知识涉及到哪些数学思想和方法是需要及时掌握的。

该记忆的内容要注意用心去记,只有记住必要的知识,思维才有依据。

另外,要注意作好笔记。

培根在《论求知》中说:“作笔记能使知识精确。

如果一个人不愿做笔记,他的记忆力就必须强而可靠”。

要注意把老师讲的重点,特别是老师总结的一些经验性、规律性的知识记下来,便于课后及时复习。

课后复习,要思考有哪些问题已经搞会了,有哪些问题还没有搞会,并及时做好查漏补缺的工作。

七、应考时要舍得放弃。

对于大部分数学基础不是很扎实的同学来说,放弃最后两题应该是一个比较明智的选择。

一般来说,质量较高的数学试卷,最后两题对于能力的要求较高。

数学基础较弱的同学不要花太多的时间在这里,而应把精力放在前面的基础题上,这样成绩反而会有所提高。

中高考的大题目都是按过程给分的,所以万一遇到不会的题也不要空着,应根据题意尽量多写一些步骤。

在对待粗心这个常见问题上,我有一个建议,就是要养成打草稿的习惯,而且要规范草稿,把打草稿当成规范的作业去对待(只是不抄题罢了),让你的草稿一目了然,这样便不太会出现看错或抄错的现象了。

考试中有时可以用计算器来提高解题速度解决难题。

但是,在考试过后一定要把题目正规的解题思路了解清楚。

每一次考试的试卷都是珍贵的复习资料,一定要妥善保存。

以上从七个方面谈了如何学好初中数学的问题。

要学好初中数学,除了要做到上边所谈外,勤奋刻苦的学习精神,认真仔细的学习态度,培养良好的学习习惯也是学好数学的关键。

在课堂上,不仅是学习新知识,还要潜移默化地学习老师解决问题的思维方式,面对一个问题,最后是提前思考,找出自己的思维方式,然后把自己的思维方式与老师的思维方式作比较,取长补短,进而形成自己的思维方式。

由“要我学”转变为“我要学”,培养学习的主动性,克服被动学习的局面。

真正掌握数学学习的要领。

检验数学学得好不好的标准就是会不会解题。

听懂并记忆有关的数学基础知识,掌握学习数学的思想与方法,只是学好数学的前提,能独立解题、解对题才是学好数学的标志。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片