
什么是方程与函数思想
函数是中学数学个重要概念,它渗透在数学的各部容中,一直考的热点、内容。
函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路 . 和函数有必然联系的是方程,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究,要确定变化过程的某些量,往往要转化为求出这些量满足的方程,希望通过方程(组)来求得这些量.这就是方程的思想,方程思想是动中求静,研究运动中的等量关系. 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的. 比如,对于满足0≤p≤4的一切实数,不等式x。
x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的.又如, 已知(3x4+7x3+4x2-7x-5)5·(3x4-7x3+4x2+7x-5)5=a0+a1x+a2x2+…+a40x40,试求a0+a2+a4+…+a40的值.此题的第一感觉,可能会联想到二项式定理,但是仔细观察会发现左边并不是某两个二项式的展开式.但比较一下对应项的系数,不难发现,它们的偶次幂项的系数都相等,而x的奇次幂项的系数互为相反数,联想到函数的奇偶性便不难解决. 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。
要总结、归纳运用函数的观点和方法解决常见数学问题的解题规律。
在解题中,充分、合理地运用函数与方程的思想方法,会产生意想不到的效果。
数学里的函数与编程里的函数在本质上是一致的。
函数是一个透明与不透明范畴的概念,有了函数,就可以在只知道要实现的功能的情况下调用该函数,而不需要知道具体的映射关系。
要解决这个映射关系就是这个函数内部所要做的。
方程是建立等价的关系,由这个或这些等价关系做出进一步推断,与函数有质的区别。
举一个用了函数与方程思想的例子
x+3=5没有用到函数与方程思想哦。
我举个例子:例:已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.分析:已知y与x的函数关系是一次函数,则关系式必是y=kx+b的形式,所以要求的就是系数k和b的值.而两个已知条件就是x和y的两组对应值,也就是当x=0时,y=6;当x=4时,y=7.2.可以分别将它们代入函数式,进而求得k和b的值.解:设所求函数的关系式是y=kx+b,根据题意,得b=6①4k+b=7.2②解这个方程组,得b=6,k=0.3所以所求函数的关系式是:y=0.3x+6 如有疑问欢迎追问。
如果满意谢谢采纳O(∩_∩)O哈哈~
什么是函数的方程和思想
很笼统的一个问题。
思路是这样的;找平衡关系。
举例说明:五支铅笔2.5元钱,问一支铅笔多少钱
小学思路:2.5\\\/5=0.5方程思想:单价乘以数量=总价设单价为x则x*5=2.5这里就是先找平衡关系,很简单的就是左边等于右边
函数与方程思想在解题中的应用主要讲什么内容
把方程看成函数,利用函数图像来解题函数图像经过x轴,则与x轴的交点就是方程的解,不与x轴有交点,则方程无解函数与x轴交点个数是解的个数,点被夹于俩数之间,就有了不等式的解集可以把一个方程拆成几个函数,几个函数图像的交点就是,方程等式成立的条件,此时交点的x值就是方程的解,交点个数就是解的个数
高三 数学 【函数与方程思想】10(请尽快解答,步骤请尽量详尽) (13日 19:44:14)
减函数,所以:a+1+cos2x≤a^2-sinx≤3①对于左边那不等式有:a+1+1-2(sinx)^2+sinx-a^2≤0即:2(sinx)^2-sinx+a^2-a-2≥0令t=sinx,则t∈[-1,1]再设f(t)=2t^2-t+a^2-a-2,所以f(t)在t∈[-1,1]恒大于等于0。
由于f(t)开口向上,且对称轴为t=1\\\/4所以f(t)在t∈[-1,1]恒大于等于0需要满足:Δ=1-4×2(a^2-a-2)≤0,解得:a≥(2+√38)\\\/4或a≤(2-√38)\\\/4②对于右边不等式:a^2-sinx≤3,即a^2-3≤sinx恒成立所以:a^2-3≤-1解得:-√2≤a≤√2由①②得:-√2≤a≤(2-√38)\\\/4
方程与函数解析式的区别
方程等式的基本性质1:等式两边同时加〔或减〕同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。
则:〔1〕a+c=b+c〔2〕a-c=b-c等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是等式。
3若a=b,则b=a(等式的对称性)。
4若a=b,b=c则a=c(等式的传递性)。
【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
一元一次方程[编辑本段]只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程,通常形式是ax+b=0(a,b为常数,a不等于零)。
1去分母 方程两边同时乘各分母的最小公倍数。
2去括号 一般先去小括号,在去中括号,最后去大括号,可根据乘法分配率。
3移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
4合并同类项 将原方程化为AX=B〔A不等于0〕的形式。
5系数化为1 方程两边同时除以未知数的系数,得出方程的解。
同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:1方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
2方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
列一元一次方程解应用题的一般步骤:1认真审题 2分析已知和未知的量3找一个等量关系4解方程5检验6写出答,解教学设计示例 教学目标 1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题; 2.培养学生观察能力,提高他们分析问题和解决问题的能力; 3.使学生初步养成正确思考问题的良好习惯. 教学重点和难点 一元一次方程解简单的应用题的方法和步骤. 课堂教学过程设计 一、从学生原有的认知结构提出问题 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢
若能解决,怎样解
用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢
为了回答上述这几个问题,我们来看下面这个例题. 例1 某数的3倍减2等于某数与4的和,求某数. (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)÷(3-1)=3. 答:某数为3. (其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4. 解之,得x=3. 答:某数为3. 纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一. 我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程. 本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤. 二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤 例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉
师生共同分析: 1.本题中给出的已知量和未知量各是什么
2.已知量与未知量之间存在着怎样的相等关系
(原来重量-运出重量=剩余重量) 3.若设原来面粉有x千克,则运出面粉可表示为多少千克
利用上述相等关系,如何布列方程
上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15%x千克,由题意,得 x-15%x=42 500, 所以 x=50 000. 答:原来有 50 000千克面粉. 此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式
若有,是什么
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程; (2)例2的解方程过程较为简捷,同学应注意模仿. 依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下: (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数; (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步); (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等; (4)求出所列方程的解; (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义. 例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果
二元一次方程[编辑本段]二元一次方程:如果一个方程含有两个未知数,并且未知数的指数是1那么这个整式方程就叫做二元一次方程,有无穷个解。
二元一次方程组:把两个共含有两个未知数的一次方程合在一起就组成一个二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
消元:将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。
消元的方法有两种:代入消元法加减消元法三元一次方程[编辑本段]三元一次方程:含有三个未知数的一次方程。
三元一次方程组:由几个一元一次方程组成并含有三个未知数的方程组叫做三元一次方程组。
三元一次方程组的解:利用消元思想使三元变二元,再变一元。
方程是初等代数中的重要内容,方程的知识在生产实践中有广泛应用。
中国古代对方程就有研究。
在《九章算术》中载有“ 方程 ”一章 ,距今已近2000年 ,书中方程是指多元联立一 次方程组 。
13 世纪秦九韶首创正负开方术 ,即一元高次方程的数值解法 。
在西方,英国 W.G.霍纳于 1819 年才发现类似的近似方法。
14世纪朱世杰对含有四个未知数的高次联立方程组的研究已达到了很高的水平。
一元二次方程一元二次方程:含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。
一般形式:ax2+bx+C=0(a=\\\/0)解法:1.公式法(直接开平方法)2.配方法3.因式分解法二元一次方程二元一次方程:含有两个未知数且未知数的最高次数为1的整式方程叫做二元一次方程。
在平面直角坐标系中,任何关于x、y的二元一次方程都表示一条直线。
二元二次方程:含有两个未知数且未知数的最高次数为2的整式方程。
函数解析式函数解析式与函数式相类似都是求出函数x与y的函数关系。
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。
----A variable so related to another that for each value assumed by one there is a value determined for the other.自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。
----A rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set.函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。
函数的概念对于数学和数量学的每一个分支来说都是最基础的。
~‖函数的定义: 设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x).数集D称为函数的定义域,由函数对应法则或实际问题的要求来确定。
相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素。
functions 数学中的一种对应关系,是从非空集合A到实数集B的对应。
简单地说,甲随着乙变,甲就是乙的函数 。
精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 , 就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合{y|y=f(x),x∈X}为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。
若先定义映射的概念,可以简单定义函数为:定义在非空数集之间的映射称为函数。



