欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 读后感 > 五个强盗分金币的读后感

五个强盗分金币的读后感

时间:2017-05-23 08:13

5个海盗分100个金币问题

~会的进,要正确答案

首先从5号海盗开始为他是最安全的,没扔下大海的风险,因此他的策最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。

接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。

哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。

因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。

再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。

但是,2号也经过推理得知了3号的分配方案,那么他就会提出(98,0,1,1)的方案。

因为这个方案相对于3号的分配方案,4号和5号至少可以获得1枚金币,理性的4号和5号自然会觉得此方案对他们来说更有利而支持2号,不希望2号出局而由3号来进行分配。

这样,2号就可以屁颠屁颠的拿走98枚金币了。

不幸的是,1号海盗更不是省油的灯,经过一番推理之后也洞悉了2号的分配方案。

他将采取的策略是放弃2号,而给3号1枚金币,同时给4号或5号2枚金币,即提出(97,0,1,2,0)或(97,0,1,0,2)的分配方案。

由于1号的分配方案对于3号与4号或5号来说,相比2号的方案可以获得更多的利益,那么他们将会投票支持1号,再加上1号自身的1票,97枚金币就可轻松落入1号的腰包了

5个强盗分金币的问题~

四号和五号一定能活下来。

三号一定不会给给四号。

二号只会给四号和五号一个。

所以假如一号只给四号五号一个那么一号必死。

故一号得96个金币四号和五号各得2金币

五个海盗分100个金币

正确答案:1号的分法应该是己98枚,2号和4号没有,3号和5号每人198 0 1 0 1推理如下;最后一个没有被扔的可能,所以从5号开始 如果前4人都被扔了,则5号可以得到100枚 如果只剩4号和5号,4号会给自己分100个给五号分0,自己的一票,达到了50%。

若剩3,4,5号三人,3号便会给自己99枚,5号1枚,5号会赞成3的方法,加上自己一票,可通过。

如果是2号出方案,他考虑到前面3,4,5的想法,便会给自己分99个给可以支持自己的4号1枚 一号想到了2的方法,所以一号的方法应该是98 0 1 0 1 3号和五号支持1号,加上1号自己的1票,就可以通过了。

百度百科

5个强盗(A,B,C,D,E)分100个金币

个人意见是:先倒过来考虑,最少是剩下4和5两个人,4提出(100:0),5肯定不同意,而4自己同意(2个人,有一个人同意,正好二分之一),所以方案通过。

4号强盗最多100个金币。

  所以5会支持3,那么3,4和5三个人,3提出(99:0:1),3和5会同意,方案通过。

3号强盗最多99个金币。

  如果是2,3,4和5,2会提出(98:0:0:2),2和5会同意,方案通过。

2号强盗最多98个金币。

  如果是1,2,3,4和5,1会提出(98:0:1:1:0),1,3he 5三个人会同意,方案通过。

1号强盗最多98个金币。

  网上答案是:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。

所以,4号惟有支持3号才能保命。

  3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。

  不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。

由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。

这样,2号将拿走98枚金币。

  同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。

由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。

这无疑是1号能够获取最大收益的方案了

答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。

分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。

强盗分金币

5个海盗分100个金币,没个人可以提出一个方案,大多数人同意方案才能通过,如果哪个人提出的方案没有通过就回被扔进海里喂鱼,他们先抽签决定各自的顺序然后依次提出自己的方案,问:1号怎么能保住自己的小命又能获得最大利益 从后向前推,如果1-3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。

所以,4号惟有支持3号才能保命。

3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。

不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。

由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。

这样,2号将拿走98枚金币。

不过,2号的方案会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。

由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。

这无疑是1号能够获取最大收益的方案了

5个海盗分金币的方法

不可能,因为有一个条件是每个海盗都足够残忍哦~~~如果a也只给de中某人一个金币的话,那个海盗因为足够残忍是不会领情的,因为b也会给他们中的一个人一枚金币

故事:五个海盗抢到了100个金币,每一颗都一样的大小和价值连城。

从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。

所以,4号惟有支持3号才能保命。

3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一-_-!!不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。

不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。

由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。

这样,2号将拿走98枚金币。

同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。

由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。

这无疑是1号能够获取最大收益的方案了

答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。

分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。

博弈论经典问题--海盗分金

5个海盗分100个金币,没个人可以提出一个方案,大多数人同意方案才能通过,如果哪个人提出的方案没有通过就回被扔进海里喂鱼,他们先抽签决定各自的顺序然后依次提出自己的方案,问:1号怎么能保住自己的小命又能获得最大利益 从后向前推,如果1-3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。

所以,4号惟有支持3号才能保命。

3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。

不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。

由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。

这样,2号将拿走98枚金币。

不过,2号的方案会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。

由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。

这无疑是1号能够获取最大收益的方案了

100金币怎么分

从后向前推 如果强盗一、二、三都喂了鲨鱼 只剩强盗四和五的话 强盗五一定不同意强盗四的方案 让强盗四去喂鲨鱼 自己就可以独吞全部金币 所以 强盗四预见这一结局 不论怎样 惟有支持强盗三才能保命 强盗三知道强盗四的赞成票已在囊中 就会提出自己独得100 块的分配方案 对强盗四、五一毛不拔 即提出(100,0,0)的分配 不过 强盗二料到强盗三的方案 会提出(98,0,1,1)的分配 不给强盗三 给强盗四和五各1块金币 由于这一方案对强盗四和五来说比在强盗三分配时更有利 他俩将支持强盗二 不希望他出局 但是 强盗一比强盗二更占先机 只要他得到3票赞成 既可稳操胜券 他可以给强盗三1块金币 给强盗四或五2块金币 这肯定要比强盗二给的多 于是 除了他自己的1票之外 他还能得到强盗三以及强盗四或五的支持 即方案(97,0,1,2,0)或者(97,0,1,0,2)

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片