欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 感言 > 数学老师的讲座感言

数学老师的讲座感言

时间:2014-09-10 02:47

刘毓洁老师的幼儿园数学和科学心得体会

数学是一门重要的学科,相信大家都想学好它,下面我想和大家分享一下我的学习方法。

1、课时预习。

以前在初中时,没有课前预习的习惯。

后来上高中了,发现没有预习只是带着课本到课堂上听老师讲解,目标很不明确,听课时便会处于被动的地位,要么盲目地去记笔记,要么就是茫茫不知所云。

这样有时记下了很多教材上原本有的内容,累得要命却没有价值。

如此一来只能是事半功倍。

当尝试预习后再听课,觉得不再是茫茫不知所云了。

如果要是时间不多,我会在课前2~3分钟预习一下上课即将讲的内容,提前进入状态,争取主动权。

2、认真听课。

听课不是听就行了,而是要认真听,要把注意力集中,跟着老师的思路走,有些同学不把上课作为学习的中心环节,一心想用课后的时间来弥补,我觉得这其实是本末倒置了,因为错过了课堂上的第一时间吸收,有的东西以后自己理解起来就是费劲了,就像捡了芝麻丢了西瓜那样。

3、认真做练习,看练习题的例题,有时候,由于时间紧迫,我便马马虎虎地完成练习,等老师评讲时,对于那些没认真思考过的题目上,只能两眼看着老师板书,有时思路跟不上,后面老师所讲的根本听不明白。

认真做练习还可以让自己知道自己喝解出来正确答案,但方法是否准确或解题步骤还欠缺什么,免得考试时白白扣掉一些不该丢失的分数。

其次,练习册中的例题也很好,里面还总结了一些学习方法,有时间应该看一下。

4、多看错题本。

很多同学做了错题本,但他们几乎不怎么看。

我也是,导致一些题目错了再错。

以上是我学习的方法,但做起来要一定的时间,如果有同学有比我更好的学习方法,不妨说出来和大家分享一下。

学习高等数学的感想

学习高等数学的感想我认为学习高数应该从以下几个方面着手: 一.走出心理的障碍.一些学生学高数学不懂,我认为是心理的障碍.这些同学当中极大数是高中时的数学没有学懂,因此一上来就失去了自信心,自认为自己不行学不懂高数.要我说这是畏惧的心理在作怪.因此要克服学习高数的困难首先应该先克服自己的心理.具体应该怎样克服这种心理难关呢?我认为首先是要找回自己的自信心.当我们拿到一道棘手的数学题,经过反复思考还是无从下手,此时千万不要谎.这时你不妨闭眼默吸一口气,并心中默念我行,我能行.这可能能激发你的思维,激活你的灵感.剩下另一些学生他们学不好高数,那他们的心理又是怎样呢?我自认为,这些学生主要是心不专,也就是在做数学题是心中没有全身心的投入,而是转想他事,这样以来刚刚还有一些思维或灵感就会随着他们的思想跑门而消失,此时他们也许就有一些自负的心理,自认为自己不是学高数的料.这也是不自信的另一种表现,因此学好高数我认为第一点就是要有自信心和专心的思考.这才是学习好高数的基础. 二.注重技巧和换位思考.有时我们拿到一道题咋看都没法做,此时我们不妨换个角度来看这道题,或许我们可以从另一面找到突破口.下面我举个例子来说明我所倡导的换位思考.我们都知道在战争中,我们打仗是注重战略的.现假设我们面前有一城堡,我们无论用什么现代武器都无法将它摧毁,那怎么办?难道是将它围住困死里面的人吗?不行.这样对我们的粮草同样是个消耗.也就是同样我们也是在困自己,再说时间就是金钱.我们没有时间去等待它的自行毁灭.假如他们的后备有积攒我们难道要等一辈子?此时最重要的是我们想办法去破他,我们可以从地底下往上攻.我们也可以从心理上打赢他们,使他们军心散乱等等一些方法.而我们现在碰上的数学难题就是这城堡,我们硬想是破不了的,我们不妨转个弯来考虑一下,也可以退一步想想或许这题没有我们想的那么困难,也可以先放下这道题去看看学过的公式,定理.从先哲的思想中去悟出这道题的突破口等等一些办法都可以用. 每当我们成功的破解一道题时,我想大家都有一种满足感.我也有这种感觉,但是我们就仅仅满足这点吗?我们为什么不再想想这道题,或许还有其他的办法去解决.这样想了,这样做了,确实很费时间,但是这样的效果是不一样,它可以激活我们的思维,下次我们再遇上难题时我们就不至于被挡住了.还有,有时我们做出一道题时发现它的步骤太过于繁琐,这时可

有限和无限数学讲座听后感想

建议您还是写自己内心真实的感悟这样大家才会认同否则的话,抄袭的只会索然无味

如何写数学的感受感想与心得

学习数学,而不是一两件事情.在我看来,最关键的是它培养的兴趣.如果你恨它,因为热管不感兴趣,甚至头痛,恐惧,这是很难的数学努力.这样的数学不感兴趣,不用功,这是很难去学习它. 当然,灯是不足够的兴趣.必须尝试去学习它.至少,一定要记住这本书的概念,公式,最好的时间来预览有什么新的教训,第二天掌握更快,更多,更好的新的一课.类记一些笔记下要点,回家晚上以上回顾,总结和学习新的东西.问老师不明白的主题,并问明了至今.当解决问题的余老师有一个简单的方法,可以提高,与老师和同学们进行了讨论.不要担心自己可能是错误的,但不敢作出这样的问题,这是一个很好的锻炼机会.教师激励我们的人,而不是“拐杖”,关键是要依靠自己的努力,多动脑.通常你可以做一些课外灵活的标题.有时,一个棘手的问题是怎么画,要几天做它,就会有成功的喜悦.

听语数英讲座的感想 300字左右

你可抄一段从我们记,数学就充满了我们的生活,小时候对数学的就是数学是主课,要认真对待,可是小学的数学一直不好,很怕做数学题目,遇到难的题目就放弃。

后来上中学,对数学的重要性有了进一步的认识,数学和语文,英语一样是150分,遇到了很好的老师,渐渐学会了数学的一些思维,开始明白数学就是得多做题目,见多识广。

到了高中,数学的知识体系渐渐形成,渐渐明白题海战术不是一定的好方法,每个人都有自己的学习方法,在准备高考的时间里,我每天都坚持做一套数学试卷,温故而知新,我觉得这个方法很好用,我觉得是命运,大学的时候我被分到数学专业,当时就觉得数学也挺好的,师范生,女孩子以后当个老师也是不错的职业,可是大学的数学体系又是另外一种,大学的数学不是纯计算的东西,更侧重于理解和证明。

而且抽象的东西很枯燥,渐渐对于数学的感觉也起了变化,我有时候觉得学这些没有用,都是理论的东西,可是后来老师告诉我们,大学学习的不是知识,而是思考数学问题的能力,大学四年的学习使我明白了,数学一些基本的框架,很多同学都准备继续考研究生,继续学习数学,感觉好像数学越学越窄,以前是在做一些入门的知识储备,现在上了研究生才感觉有点方向了,可是基础数学就是很理论的东西,我觉得就是给个定义,给个定理,再证明这个定理,然后用这个定理证明一些命题。

老师经常说数学没有定义就无法生存了,现在渐渐习惯了这个理念。

我们星期一第一次课就安排了数学前沿知识讲座,老师请来了很多教授,博士给我们讲课,主要是对当今比较热门的课题做了一些讲解,老师的工作都很优秀,我们不仅了解了很多数学的专业术语,还对数学的各个方向有了一个大致念,为以后的研究做准备,其中有几位老师都说到小波分析,小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。

为此,我看了一些关于小波分析的资料。

小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。

正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到著名数学家J.L.Lagrange,P.S.Laplace以及A.M.Legendre的认可一样。

幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法枣多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。

它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。

小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。

所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。

与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。

有人把小波变换称为“数学显微镜”。

小波分析的应用是与小波分析的理论研究紧密地结合在一起地。

现在,它已经在科技信息产业领域取得了令人瞩目的成就。

电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。

现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。

从数学地角度来看,信号与图像处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。

现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。

但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。

小波分析是当前应用数学和工程学科中一个迅速发展的新领域,经过近10年的探索研究,重要的数学形式化体系已经建立,理论基础更加扎实。

与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。

通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。

小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。

数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。

事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。

在信号分析方面的滤波、去噪声、压缩、传递等。

在图像处理方面的图像压缩、分类、识别与诊断,去污等。

在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。

(1)小波分析用于信号与图像压缩是小波分析应用的一个重要方面。

它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。

基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。

(2)小波在信号分析中的应用也十分广泛。

它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。

(3)在工程技术等方面的应用。

包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。

对于小波分析的理解不是很多,老师给我们展示了一些小波分析的应用,对于图像的处理,可以把破坏的图像还原,我印象很深刻,有两个女子的图像都做了还原,可是两个图像运用到的小波分析的过程还不一样,我明白了数学作为基础学科的重要性,以及数学和计算机程序结合的魅力,我忽然想起了以前看过的一些历史记录片,上面就会有很多古代的被损毁的文物,科学家把这些文物在电脑上经过一些程序的运算,得到文物的复原图,当时觉得很神奇,现在想想原来这个“神奇”离自己那么近,很幸福的感觉。

数学前沿知识讲座带给我的思考不仅仅是这些,它对我未来的学习之路起到引导的作用,也使我更深一层认识到数学的很多还未解决的问题,接触到很优秀的教授,也给自己树立了榜样。

希望自己能再未来的学习中也像老师们一样优秀,为数学的研究工作做出一些贡献。

学习数学的感想 600字

学习数学的感悟 我国著名数学家华罗庚曾这样说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。

”是啊,特别是二十一世纪的今天,数学的应用更是无处不在。

随着六年的数学学习,我对数学的的热爱可谓是日增月涨,对数学的感悟也是越来越深了。

 在乾隆年间,纪晓岚就巧妙运用了“数学”来博得乾隆的欢心。

乾隆说出了上联“花甲重逢,增加三七岁月”,什么意思呢

中国人以60为一花甲,一个花甲就是60岁,花甲重逢,60×2=120岁,增加三七岁月,三七二十一,120+21正好是141岁。

纪晓岚马上对出了下联“古稀双庆,更多一度春秋”。

我们中国有一句古话“人活七十古来稀”,七十便是古稀之年,古稀双庆,70×2=140岁,更多一度春秋,也就是140+1=141岁。

再联系到今年的上海世博会中的数学,世博会的场馆多么宏伟壮观,才华横溢的建筑设计师们需要精确计算建筑的高度,宽度,长度,还要计算它的角度,需要运用到几何等。

这如果没有了数学,能建造出来吗

数学是神奇的,数学知识是无穷无尽的,数学公式是非常奇妙的,而数学思考题则可以挖掘出我们的智慧。

“数学是科学的皇后”,她的美丽与神秘吸引着很多人在不断去探索数学的奥妙。

数学就像一阵清风吹进了我的心扉,它将引领着我在数学的海洋里遨游。

 数学中一个个奇妙的数字,那一个个有趣的符号,都是帮助我开启数学大门的钥匙。

只有拥有扎实的基础,才能让数学之花慢慢开放。

口算、递等式、速算和巧算就像是地基,只有把“地基”建牢固了,才能对数学越来越有兴趣;反之,如果“地基”不牢固,久而久之就会对数学产生一种厌恶的心理。

在做计算题时,只有细心加上耐心,只有这样,才能得到百分之百的正确。

因为我曾无数次与数学难题较量,每次我都坚持攻克数学难关,所以我从解数学题中也学到了不少:坚持就是胜利,只有永不言败、坚持不懈才能迎来成功,在困难中坚持不懈,笑对生活,最终困难就会被折服,成功也就会向你微笑。

 数学,就像一座高峰,直插云霄,刚刚开始攀登时,让人感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。

记住,站在峰脚的人是望不到峰顶的。

数学是神秘的,同学们,让我们携手畅游在数学的海洋里,去揭开数学神秘的面纱,共同探索数学的奥妙吧

学习成功得到快乐的情绪体验是一种巨大的力量,它能使学生产生学好数学的强烈欲望。

要使学生获得成功,教师必须设计好探索数学知识的台阶,包括设计好课堂提问和动手操作的步骤等,使不同智力水平的同学都能拾级而上,“跳一跳摘果子”,都能获得经过自己艰苦探索,掌握数学知识后的愉快情绪体验,从而得到心理上的补偿和满足,激励他们获得更多的成功。

当学生在探索学习的过程中遇到困难或出现问题时,要适时、有效的帮助和引导学生,使所有的学生都能在数学学习中获得成功感,树立自信心,增强克服困难的勇气和毅力。

特别是后进学生容易自暴自弃、泄气自卑,教师要给予及时的点拨、诱导,如画出线段图帮助他们理解应用题、让他们换句话说说理解题意、举个例试试等,半扶半放地让他们自己去走向成功。

、 著名的教育家苏霍姆林斯基曾说过:“如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么,这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲倦。

”因此,教师在组织教学时,应通过设置各种问题情境,创设各种具有启发性的外界刺激,引导学生积极思维,激起学生要“弄懂”、“学会数学”知识和技能的欲望。

在教学中设置一些悬念,创造一种特殊的情境,则更能引起学生的共鸣,并使这种共鸣转化为求知欲,进而把注意转移到新知识的学习上。

数学发展史和感想

我校领导的带领下,于X年X月X日,到(地点1)听 取了数学X老师,为我们进行了讲主题是“知识与创造力”。

这次学习,听了1天的专家的讲座,后,第二天又到“(地点2)”分别听了2位优秀教师的课,并听了一节专家示范课和听课点评。

针对这次学习,既有理论的提升,又有实践所得,既有专家讲座,又有互动交流,收获多多,下面我结合专家X老师的所讲的内容,结合自已平时的教学实际,谈一点自 已的想法。

(1)讲座内容后,得知,近几年数学中考命题的新趋势,那 么,平时地教学中就应重视这类题型的训练,如,紧密联系现实生活的试题,几何论证转向发现,猜测和探究等。

(2)在平时教学中,应把握好数学新课程加强的内容,“重视估算,鼓励算法多样化;重视发展空间观念;重视统计与概率的内容;加强实践与综合应用;鼓励使用计算器(机)。

这样对准备参加中考学生的成绩才会有一定的提高。

通过这次学习,多少得知X年数学中考命题新的趋势,并得到了平时难以收集到的中考“试题扫描”,为我下学期中考复习,提供了很好的材料。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片