欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 医用物理学心得体会

医用物理学心得体会

时间:2016-12-21 03:46

大一上半学期医用物理学习心得

医用物理,即物理学与相结合的基础知识,是医学物理学课不可少的课程内容,但应在满足基本物理知识教学之后,让我们通过物理知识的学习去理解与医学相关的内容。

在整合时,可在相关经典物理部分的内容之后,将相应的医用物理知识系统的整合到一个专题。

如:在电学知识内容之后安排生物电现象专题。

包括人体力学、波动于声波、液体的流动、直流电等内容。

这样既充分利用了教学学时,又突出了重点;明确了通过物理学知识的学习去理解生命现象的学习目的;同时还使医用物理知识有了系统性的概括。

在教材内容上紧密结合医学,以突出物理学在医学上的应用为特点,充分考虑到学习的实用性、科学性、先进性和前沿性,重点阐述物理学的基本思想、概念、原理和方法,加强了基础理论和基本知识在医学上的应用,克服了理论化、公式化等枯燥乏味、烦琐的内容。

让我们在学习的过程中真正体会到学有所用,更有利于我们自主学习。

对于刚迈进高等学校的大学生来说,“为什么要学习医学物理学,怎样学好医学物理学”的问题并不十分清楚。

医学物理学教学目标是使我们掌握基本的物理学原理,培养科学的思维方法,所以我们要在绪论课上着重从这两方面入手,通过具体、生动的实例展示物理学基本原理在现代医学科学中的重要应用,认识到物理学是自然科学的基础,进入生命科学技术的任何一个领域,都必须敲开物理学的大门,从而体会到物理学基础知识的重要性。

如通过展示临床核磁共振图像,进而指明核磁共振成像技术就是利用了核自旋的概念及核磁矩与外磁场的相互作用的原理,认识到物理学有很强的基础性、应用性、使用性;物理学在理论上和技术上的新成就不断为生命科学和医学的发展提供理论基础和技术方法,反过来,生命科学和医学的发展又不断向物理学提供新的研究课题,二者互相促进、相辅相成,协同发展。

2003年诺贝尔生理、医学奖授予了核磁共振现象的发现者,更有力地说明了物理学原理在医学领域中的重要意义

对预防医用物理学的心得体会

医用物理学以全国高等学校医学成人学历教育培养目标、卫生部教材办公室提出的成人学历教育教材要“能够体现我国医学成人学历教育的特点、能够确保成人学历教育目标的实现”编写目标为依据,由全国10省11所院校中长期从事成人医用物理学教学的骨干教师结合多年的教学实践体会共同编写。

本书的编写指导思想是在坚持“三基”(基本理论、基本知识、基本技能)、“五性”(思想性、科学性、先进性、启发性、适用性)的基础上,力求贴近医学成人学历教学的实际。

本书有以下几个特点:1.避免烦琐的数学推导,所用的数学知识以初等数学为主。

便于自学,力求采用通俗易懂的文字,突出物理思想的阐述。

2.物理学基本内容的深度与广度接近普通高等医学教育的本科物理教材,起点接近普通高等医学教育的专科物理教材,方便教师根据学生实际水平组合教学内容,使教材具有普适性。

3.根据“实用”、“够用”、“会用”的原则,重点介绍与医学关系密切的物理学内容。

根据成人学历教育学生医学专业理论与技能“非零起点”的特点,比较深入地介绍与讨论了物理学基础理论知识在医学临床中的相关应用,并以渗透的方式分散在各章节中。

4.各章在适当处,以文字框的形式,设置了“问题与思考”、“相关链接”,期望能起到启发思考、开阔视野的作用。

全书16章,基本覆盖了医学专业所需要的物理学基本理论知识及其在医学中的主要应用。

每章配有一定数量的例题、思考题与习题。

同时编写了配套教材《医用物理学学习指导与习题集》,供师生使用。

本书适合全国高等学校医学成人学历教育临床医学专业(专科起点升本科、专科)学生使用,也可作为医学成人学历教育其他相关专业师生的参考书。

医学影像物理学学习心得和体会

主针对影像技术的成像原理进行研究的究理也比较多。

主要讲解X-成像、核磁共振成像、核医学成像和超声波成像的原理、方法及其应用的专业性。

医学影像的核心就是解剖+病理+成像原理。

影像学大多属于解剖成像(其他如fMRI、核医学等包含功能性因素),所以解剖学是基础,无论是系统解剖还是断面解剖都是影像人的必备功底,对人体的空间想象力也是十分应重要(尤其超声诊断),解剖只能多记、多想像了,某些正常值确实很操蛋,但也没办法,比如什么胆总管的正常直径之类的只能死记硬背啦,当然这些东西如果能经常用到就不会忘。

每一个影像征象都必须有一个病理学及成像原理解释,书本上学习的都是很典型的病变征象,仔细理解这些疾病的病理学变化,能很好的帮助影像的学习。

然而临床上除了典型征象,还会遇到很多不典型的,甚至完全没有头绪的,这种时候只能通过:征象—病理—疾病的顺序进行推测,难度很高,需要大量的各学科知识储备,所以对于影像医生来说,直觉诊断功不可没,有人说影像诊断7分靠科学,3分靠直觉,我认为这是事实。

成像原理是影像人的特有功底了,比如为什么MRI上有些病灶T1WI呈低信号,T2WI呈高信号

这些都是有影像设备原理解释的。

以上三点都是学我能想到的学习影像的关键,影像医生不应该比临床少学,而是多学,我们只是把学习到的所有医学知识和功力用在了影像诊断上,而不仅是从影像诊断出发去学习相关的知识。

临床医学专业一定要把高数和医用物理学好吗

我数学和物理很差。

数学无所谓只要统计的理论能分出什么时候用t检定、什么时候用U检定之类的就够了怎么算电脑都会自动出来工资条会帮你自动扣好税,加减乘除算个大概就好也无所谓的反正我两位数乘法心算做不出来也不影响我在面试医学专硕- - -物理非常重要,理论看不懂就别学医了还是那句老话,具体算术怎么算不重要考试能用计算器、临床上机器里都自带演算法、做研究matlab+python能解决所有问题但如果你搞不懂电磁学、流体力学、热力学具体到底在讲什么[现象],趁早改行才是正道

医学物理学就业前景

医学物理学在中国的发展前景1. 医学物理学在中国发展的前提和基础在21世纪,人类面临各种心血管疾病、各类肿瘤疾病、呼吸疾病、肝胆疾病、艾滋病等恶疾的严重威胁。

早期诊断、准确诊断、及时治疗、精确治疗是现代临床医学发展及造福人类的必由之路,这就必须应用现代先进的医学影像诊断设备和先进的治疗设备,这些高新技术设备必须由现代化的医师、现代化的医学物理师充分合作,互相配合,有效地使用大批现代化数字化的医疗器械为病人有效地服务。

这是时代的要求。

中国的医院也应该适应这一时代要求。

医学物理学在中国的发展也是时代的要求,医学物理学家或医学物理师在中国医院中应有重要的职位和地位,也是时代的要求。

忽视培养中国的医学物理学家,不建立医学物理师在医院的职位编制,将不符合时代的要求,并妨碍着现代化医院的发展。

我们必须清醒地认识到,时代前进是不可阻挡的,与时俱进才是我们应走之路。

中国的医院建立医学物理师的职位编制,医院的领导重视医学物理师在临床诊疗中的重要作用,是医学物理学科在中国发展的前提和基础。

任何一门学科的发展,都是以国家、社会和专业职位的需求为基础,才能在培养人才、科学研究和专业应用等方面全面发展的。

例如国家、社会和医院需要大批各类医师治病救人,临床医师的大批职位需要大批医学院培养大批临床医师,这是显而易见的。

医学物理学的发展也不例外。

为此,我们建议国家卫生部重视医学物理学科的发展,并给予发展的前提和基础,并支持有关的高等院校及医院培养医学物理学的人才。

这是医疗改革的大事。

2. 名牌大学与名牌医院合作培养新一代医学物理学家医学物理学在中国的发展,首先应该通过名牌大学与名牌医院的物理学家和医学家充分合作,培养既掌握物理学的理论和技术,也掌握临床医学的知识和技术的新一代医学物理学家。

医学物理学是一门应用物理学,以物理学的理论知识为基础,其特点是把物理学的理论知识及方法、技术应用于临床医学和医学研究,其服务对象是病人,同医师一样,负有治病救人的责任。

例如放射肿瘤医师对癌症病人进行诊断后,开出处方与医学物理师共同制定放射治疗方案,由医学物理师实施治疗方案,共同对病人负责。

医学物理师虽然没有开处方权,但他们实施治疗计划,面对病人,与医院的工程师责任不同,责任更重大。

必须认清,医学物理学是一门物理学,而生物医学工程学是一门工程学,两者的性质不同,作用也不同。

据了解,美国、英国、德国、加拿大、日本的医学物理学家,大部分都具有博士学位(Ph.D),少数为硕士,掌握物理学理论知识较深厚,都是在医院与医师一起工作,熟悉有关临床医学技术。

他们在医学物理学杂志发表的论文,都是理论性、技术性与医用性并重的高水平创作,而不是一般的技术性文章。

在美国,医学物理学家不参加生物医学工程学会的会议,生物医学工程学家也不参加医学物理学会的会议,只有三年一度的“医学物理与生物医学工程世界大会”(World Congress on Medical Physics and Biomedical Engineering)才共同参加,发表论文,交流经验,但设有两个主席,一个代表IOMP,一个代表IFMBE。

可见,这是两个独立的学科,两个独立的学会。

为什么发达国家的医学物理学家都是具有哲学博士学位

因为同他们合作的医师也都具有医学博士学位,而且美国的医学博士都是8年制的医学院毕业的,前四年在综合大学学习理工课程,数理化、电脑与电子学都有较好的基础,他们需要与高水平的医学物理学博士合作进行诊疗工作。

而我国的医师是5~6年制医学院毕业生,数理化、电脑与电子学基础较差,对使用高科技医疗设备难免有一定困难,经过短期培训也难以全面掌握高档设备的技术参数和性能,更需要具有高水平的医学物理师合作,掌握好高档设备的技术性能进行诊疗。

例如一般CT的技术参数有20个之多,高档CT更复杂,只有医师与医学物理师合作才能真正全面掌握CT的技术性能。

其他更高级复杂的现代化医疗器械,更加需要临床医师与医学物理师合作,才能充分利用高档设备治病救人。

否则,进口价值昂贵的医疗器械未能充分利用,是一大浪费。

为什么中国新一代医学物理学家需要名牌大学与名牌医院合作培养呢

因为医学物理学这门新兴边缘学科,需要名牌大学开设医学物理学专业,讲授医学物理学的各门课程,还需要名牌医院的名牌医师讲授临床应用的课程及指导学生在医院实习使用高档医疗器械,名牌大学和名牌医院合作培养出来的医学物理学学士、硕士、博士,才是真正符合现代医院需要的人才。

例如,清华大学与协和医科大学强强合作,属下有协和医院,阜外医院和肿瘤医院等名牌医院,就完全具备培养新一代医学物理学家的条件。

其他各大城市也有类似的条件,也可培养医学物理学家。

为此,我们建议国家教育部大力支持名牌大学与名牌医院合作,采取有效措施,培养新一代医学物理学家(师),这是教育改革的大事。

3. 科学研究是发展医学物理学的动力任何学科的发展,都是以科研为动力,医学物理学也不例外。

1895年伦琴发现X射线,立刻应用于医学,是最伟大的医学物理学家,获得了首届诺贝尔物理学奖。

X射线在医学诊断与治疗的应用及研究,建立了放射学这门伟大的学科,发展至今,开花结果,造福人类。

1972年医学物理学家阿伦·科马克(Allan M.Cormack)创立了CT的重建图像理论,发展了放射学,解决了X射线成像无法克服的困难,为数字影像学这门新学科的发展开辟了一条光辉大道,1979年获得诺贝尔医学与生理学奖。

磁共振成像首先是由英国Aberdeen大学医学物理学教授John Mallard研制出样机作人体成像。

美国著名医学物理学家甘美伦教授(John R.Cameron)发明研制了热释光剂量仪(TLD)和骨矿物质密度测量仪。

还有IMRT、TOMOTHERAPY、γ刀、医用加速器等等现代医疗器械,都是医学物理学家与医学家合作研制的。

新的科研成果,引出新的学科,如CT物理学,MR物理学,放射治疗物理学,γ刀物理学等。

新一代的中国医学物理学家,应该在教学、科研及临床实践三方面发展。

高等医学院校的物理教授、副教授、讲师及研究生,应该按教学、科研、临床实践三结合的方向进行工作。

中国科学院高能物理研究所、物理研究所与医学院、医院合作进行高新医学科研项目的研究,如正电子发射型断层扫描仪,医学直线加速器等高技术医疗器械的研制,实行高等院校、高级研究所、医院及厂家充分合作,科学家、工程学家、医学家三结合进行科研工作,这是中国医学科学技术发展的必由之路。

为此,我们建议国家科技部重视医学物理学的科研工作,纳入国家科研计划,以促进医学物理学科的发展。

1000字关于数学物理方法的学习心得体会,怎么写

哪里有资源

啦啦啦德玛西亚~

医学物理学感觉好难,上课很少能听懂,究竟怎样才能学好呢

求指教,我是临床医学系的

你好

我跟你也是临床医学专业的。

医学物理学嘛,这门课对临床医学生要求不是很高,只需要懂得一些基本原理,知道公式怎么用就可以了。

建议你多看课本的例题,如果你有电脑,你可以在网上找一些视频来看,希望对你有所帮助

大一学医临床专业,医学物理学不好今后会有什么影响

只要别挂科就行,这个毕业后基本用不到的

物理学在医学上的应用

医学物可归纳为物理学应用的一个支它是将物理学的、方法和技术应用于医学而形成的新兴边缘学科。

换句话说,医学物理学系结合物理学、工程学、生物学等专业,应用于医学上,尤其是在放射医学或激光医学。

因此,医学物理学也可与医学电子学(医学器材的研究)、生物医学工程学(工程原理应用于生物与医学),及保健物理学(分析、控制辐射伤害)等学科合作,共同促进医学与生物科技的进步。

它的出现大大提高了医学教育水平,促进了临床诊断、治疗、预防和康复手段的改进和更新进程。

其主要研究内容有:1、人体器官或系统的机能以及正常或异样过程的物理解释;2、人体组织的物理性质以及物理因子对人体的作用;3、人体内生物电、磁、声、光、热、力等物理现象的认识;4、物理仪器(显微镜、摄谱仪、X线机、CT、同位素和核磁共振仪等)和物理测量技术的医学应用。

作为一个独立学科,它形成于本世纪五十年代,1974年国际医学物理组织(IOMP)成立,1986年医学物理分会以中国医学物理学会的名义加入国际医学物理组织。

随着近代物理学和计算机科学的迅速发展,人们对生命现象的认识逐步深入,医学的各分支学科已愈来愈多地把他们的理论建立在精确的物理科学基础上,物理学的技术和方法,在医学研究和医疗实践中的应用也越来越广泛。

光学显微镜和X射线透视对医学的巨大贡献是大家早已热悉的。

光导纤维做成的各种内窥镜已淘汰了各种刚性导管内镜,计算机和X射线断层扫描术(X-CT)、超声波扫描仪(B超)和核磁共振断层成像(MRI)、正电子发射断层显像术(PET)等的制成和应用,不仅大大地减少了病人的痛苦和创伤,提高了诊断的准确度,而且直接促进了现代医学影像诊断学的建立和发展,使临床诊断技术发生质的飞跃。

物理学的每一新的发现或是技术发展到每一个新的阶段,都为医学研究和医疗实践提供更先进,更方便和更精密的仪器和方法。

可以说,在现代的医学研究和医疗单位中都离不开物理学方法和设备,随着医学科学的发展,物理学和医学的关系必将越来越密切。

物理学不仅为医学中病因、病理的研究和预防提供了现代化的实验手段,而且为临床诊断和治疗提供了先进的器械设备。

可以说,没有物理学的支持,就没有现代医学的今天。

1、光学对医学的影响激光在医学上已广为应用,它是利用了激光在活体组织传播过程中会产生热效应、光化效应、光击穿和冲击波作用。

紫外激光已用于人类染色体的微切割,这有助于探索疾病的分子基础。

在诊断方面,随着各项激光光谱技术在医学领域运用研究的广泛开展,比如生物组织自体荧光、药物荧光光谱和拉曼光谱在癌肿诊断及白内障早期诊断等方面的研究正在发展之中。

激光光学层析(断层)造影(OT)技术正在兴起,它是替代X-CT的新兴的医疗诊断技术。

在治疗方面,激光手术已成为常用的实用技术,人们可选用不同波长的激光以达到高效、小损伤的目的。

激光已用于心血管斑块切除、眼角膜消融整形、结石粉碎、眼科光穿孔、子宫肌瘤、皮肤痣瘤、激光美容和光动力学治癌(PDT)等方面。

在诊断中使用的内窥镜如胃镜、直肠镜、支气管镜等,都是根据光在纤维表面多次发生全反射的原理制成的。

医用无影灯、反光镜等也是利用光学原理制成的。

近场光学扫描显微镜可直接在空气、液体等自然条件下研究生物标本等样品,分辨率高达20nm以上,已用于研究单个分子,有望在医学领域获得重要应用。

利用椭圆偏振光可以鉴定传染病毒和分析细胞表面膜。

全息显微术在医学上应用也很广泛。

放射性对医学的影响射线在医学领域应用极广,这是基于人体组织经射线照射后会产生某些生理效应。

射线可通过反应堆、加速器或放射性核素获得。

在病因、病理研究方面,利用放射性示踪技术,使现代医学能从分子水平动态地研究体内各种物质的代谢,使医学研究中的难题不断被攻破。

例如弄清了与心血管疾病密切相关的胆固醇生物合成过程。

现在放射性示踪已成为现代医学不可缺少的强大武器。

放射性在临床诊断上的应用已很普及,例如X光机和医用CT。

1895年伦琴在研究稀薄气体放电时发现X射线。

X射线发现后仅3个月就应用于临床医学研究, X射线透视是根据不同组织或脏器对X射线的衰减本领不同,强度均匀的X射线透过身体不同部位后的强度不同,透过人体的X射线投射到照相底片上,显像后就可以观察到各处明暗不同的像。

X射线透视可以清楚地观察到骨折的程度、肺结核病灶、体内肿瘤的位置和大小、脏器形状以及断定体内异物的位置等。

X射线透视机已成为医院的基本设备之。

1972年英国EMI公司的电子工程师洪斯菲尔得(G.H.Hounsfield)在美国物理学家柯马克(A.M.Comack)1963年发表的数据重建图像数学方法的基础上,发明了X-CT,使医学影像技术发生重大变革。

现在X-CT在全世界得到广泛应用,成为举世公认的重大科技成就。

柯马克和洪斯菲尔得两人也因此获得1979年诺贝尔医学生理奖。

X-CT是利用X射线穿透人体某层面进行逐行扫描,探测器测量和记录透过人体后的射线强度值,将这些强度值转换为数码信号,送进计算机进行处理,经过排列重建。

在显示器上就能显示出该层面的“切片”图。

使用X-CT装置,医生可以在显示器上看到各种脏器、骨骼形状和位置的“切片”,病变的部位、形状和性质在图像上清晰可见,大大提高了诊断的精度。

X-CT的优越性在于它可以清晰地显示人体器官的各种断面,避免产生影像的重叠。

X-CT具有相当高的密度分辨率和一定的空间分辨率,对脑瘤的确诊率可达95%。

对腹部、胸部等处的肝、胰、肾等软组织器官是否病变有特殊功用,对于已有病变肿瘤的大小和范围显示也很清楚,在一定程度上X-CT还可以区分肿瘤的性质。

目前,医用X-CT已成为临床医学诊断中最有效的手段之一。

而正电子发射断层扫描(PET)是一种先进的核医学技术,它的分辨率高,用生理性核素示踪,是目前唯一的活体分子生物学显示技术,PET可以从生命本原——基因水平作出疾病的早期珍断。

PET不仅可生产放射性核素,还可用于肿瘤学、神经病学和心病学的研究,它可为病变的早期诊断、疗效观察提供可靠的依据。

放射性在临床中主要用于癌肿治疗,针对对常规外科手术来说困难的疾病和部位(如脑瘤)而设计的粒子手术刀已得到了推广,其中常用的有X光刀和γ光刀。

快中子、负π介子和重离子治癌也在进行,它们对某些抗拒γ射线的肿瘤有良好的效果,但是价格高昂,世界上已有许多实验室在临床使用。

其次,粒子手术刀对许多功能性疾病如脑血管病、三叉神经病、麻痹、恶痛、癫痫等也有很好的疗效。

另外,利用放射性可对医疗用品、器械进行辐射消毒,具有杀菌彻底、操作简单等优点。

3、电磁学对医学的影响 磁共振断层成像是—种多参数、多核种的成像技术。

目前主要是氢核( H)密度弛豫时间T 、T 的成像。

其基本原理是利用一定频率的电磁波向处于磁场中的人体照射,人体中各种不同组织的氢核在电磁波作用下,会发生核磁共振,吸收电磁波的能量,随后又发射电磁波,MRI系统探测到这些来自人体中的氢核发射出来电磁波信号之后,经计算机处理和图像重建,得到人体的断层图像.由于氢核吸收和发射电磁波时,受周围化学环境的影响,所以由磁共振信号得到的人体断层图像,不仅可以反映形态学的信息,还可以从图像中得到与病理有关的信息。

经过比较和判断就可以知道成像部分人体组织是否正常。

因此MRI被认为是一种研究活体组织、诊断早期病变的医学影像技术。

MRI与X- CT和B超比较,X- CT及B超只能显示切面的密度分布图像,而MRI图像可以显小切面的某一原子核同位素的浓度分布或某一参量(如弛豫时间)分布。

因此MRI要比X- CT和B超获得更多的人体内部信息,尤其是对于脑部病变和早期肿瘤病变的诊断,MRI更具有优越性。

由于人体内存在电磁场,可为医学疾病的诊断提供重要的检测依据。

故脑电图、心电图早已用于脑部疾病、心脏疾病的诊断,与之相对应的脑磁图、心磁图在医学诊断上更为准确有效,但由于技术和价格等原因在临床诊断上尚未得到广泛应用。

对肺磁图的认识则较晚,它对肺部疾病(如尘肺病等)的诊断比X射线更为有效。

目前,有些发达同家已把它作为肺部疾病诊断的重要手段。

由于原有X射线造影剂(钡餐)效果不够理想,人们研制了磁性X射线造影剂,现在已用于临床诊断。

这是一种具有磁性的流动液体,对X射线具有较好吸收率,通过改变外部磁场,它几乎可到达身体内的任何待查部位,而且不会在体内凝固。

电子显微镜在医学中应用广泛,可用来观察普通光学显微镜不能分辨的精细结构。

如生物中的病毒、蛋白质分子结构等。

电子显微镜根据电子束照射物体井成像的原理,利用电子束通过磁透镜(基于磁聚焦原理)进行聚焦,然后通过加速电压能产生波长很短的电子波,其放大倍数是普通光学显微镜的几十倍甚至几十万倍。

另一方面,在医学中利用电磁原理可改善人体内部的微循环,达到治病保健的作用,如血液循环机和各种磁疗仪等;根据人体与电磁波的相互作用,在医学上利用电磁能的热效应进行肿瘤的高温治疗和一般热疗。

粒子加速器在医学中用来产生用于诊断或治疗的射线,也可用来生产注入人体内利于显像的放射性物质,它是利用带电粒子在磁场中的运动规律制成的。

4、声学对医学的影响超声在医学中用于诊断和治疗,由此形成了超声医学。

超声波在临床诊断上的应用相当广泛,它主要是利用超声良好指向性和与光学相似的反射、散射、衰减和多普勒效应等物理规律,利用超声发生器把超声波发射到体内,并在组织内传播。

病变组织的声阻抗与正常组织有差异,用接受器把反射和散射波接受下来,经过处理显像后就可对病变进行诊断,比如A超、B超和多普勒血流仪等。

B超与X射线透视相比其结果的主要差别是:X射线透视所得出的是体内纵向投射的阴影像,而B超得出的是纵切面的结构像,在切面方向没有重叠。

可以准确判断切面的情况。

为了提高某些微小病灶(例如小肝癌等)的检出水准,声学中的非线性问题引起了人们的关注。

近来,非线性参量成像已成为超声诊断的—个研究热点,二次谐波成像是最新发展的方法之一。

二次谐波的应用基于声学造影剂,在超声诊断时预先注入人体待查部位超声造影剂,这样可增加血流信息,有利于病灶的显示,二次谐波成像在冠状动脉疾病诊断中已受到广泛的重视。

超声在治疗方面的应用是基于超声在人体内的机械效应、温热效应和一些理化效应。

有超声碎石、超声升温治癌、超声外科手术刀以及超声药物透入疗法,超声可用于治疗硬皮症、血管疾患、腰腿疼、精神病等许多种疾病。

临床上使用的有多种超声治疗机。

另外,超声在美容中用于超声洁牙、超声减肥等。

在医学上用来进行活体观察的声学显微镜,是利用声波来获得微观物质结构的可见图像技术,它是集声学、压电、光学、电子学和计算机等成果于一体的高科技仪器。

目前,物理学在医学应用中的深度和广度正在进一步拓展,往往需要综合利用多种知识,比如能迅速缓解疼痛病状的声电疗法,就是综合利用了超声和交流电。

在其他方面,液晶在医学上已用于医疗热谱图(诊断乳癌、血液疾病等)和其他显像技术中。

超导等技术在医学中也有应用。

总之,物理学极大地促进了医学的发展,现代医学对物理学的依赖程度也越来越高。

我们相信物理学在医学中将会获得更多的应用,并为医学的发展做出更大贡献。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片