
求线性代数心得体会。
在实际的工作应用中,线性代数比微积分更为常用,更为实用。
在以后的科研工作中也是,我推荐你在网上或者图书馆借阅一本美国的David C.Lay写的一本书《线性代数与应用》,只有在实际生活中看到是怎么运用,就会产生兴趣。
线性代数学习心得
写写你学线性代数的感想呗
当然前提是你得看书了。
比如说可以写你对方程组写成列向量的好处,优势,是不是更方便了呢
线性变换在R3上的作用有什么实际意义
线性变换和原有的线性空间有什么关系,好像维数是一样的吧,那么到了一般情况的向量空间呢
无穷维呢
一样的时候有什么意义
什么是向量空间呢
能不能推广呢
必要的时候可以找些相关的书来看看啊
谈谈学习线性代数的感受
我大四的,做矩阵都是有程序的有的会有窍门的,你看一下例题,多琢磨琢磨他是怎样做的,先做简单的,摸透后再做难的
我也想要线性代数的论文2000字
我也想要线性代数的论kerndinghaob
请谈谈在学习高等数学中遇到的困难和你是怎么克服的,并总结一下你是学习中的收获和体会(不少于200字
回顾大一的高数学习历程,感慨颇多。
高数在整个大学的学习课程中占据这着非常重要的地位。
其一,高数的学分是所有科目中最高的。
第一学期5学分,第二学期6学分。
其二,高数在考研数学中将近80%的比例。
而考研数学的成绩会很大程度上决定考研的最终成绩。
其三,高数是学习其他的课程的基础。
比如我们大二上学期学的大学物理,还有其他学院的线性代数等等。
对于大一同学来说,高数就是一道必须迈过坎。
作为一个过来人,今天我就说说关于高数的点滴想法。
谨以此与大家分享。
学习任何东西都需要工具,学习数学更是要多种工具并进。
首先,你要有足够的课外参考书来供自己参考。
没有参考书,只有课本是根本不行的。
你可以去学校的图书馆借阅相应的书籍。
网络是所谓的公开式大学,有电脑的同学可以从网上查阅相关的资料,不会就找“度娘”。
既可以提高自己搜索信息的能力,又节省了时间。
概念定理永远是数学的灵魂。
我在学习高数过程中非常重视概念的理解,定理的推导,知识点间的联系。
例如:极限的概念及其证明,导数与极限的关系,连续与可微的关系函数 极限 连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、常微分方程。
很多同学会说“我也知道概念很重要,可我就是理解不了啊
”类似这种情况的同学不在少数。
我给的建议是:逐字逐句阅读。
不会不懂就要借助以上所说的工具来学习。
概念理解了,很多东西就迎刃而解了。
当时我对概念理解很是郁闷,没得办法,只能一字一句的解析,一点一点的抠。
慢工出细活嘛,时间长了就理解了。
相信:功到自然成。
练习,练习再练习;总结,总结,再总结。
坚持,坚持再坚持。
第一次做后面习题会错很多,可能一晚上就做那么两道题。
请你不要气馁,谁都是这么走过来的。
错了的题要总结。
过几天翻过来再做,再总结。
反反复复,你做题的速度会越来越快,总结的东西会越来越精炼。
可能你会用整整的一天去练习高数,在这个练习2\\\/3页过程中会很痛苦,但是你一定要坚持下来。
正所谓:宝剑锋从磨砺出,梅花香自苦寒来。
以上两点就是我学习数学的精华所在。
但是这够了吗
这远远不够
按照这样的做法,你上课会听得懂,作业也慢慢会做了。
但是你能在众多高手中脱颖而出吗
你需要做的还有很多。
下面是的我的一些建议:首先是预习。
你的进度要比老师的进度至少快一节,这样你才会更好的掌握课堂知识和更好地学习总结。
有能力,有时间,你就再往后预习。
积累问题,带到课堂去问老师。
这也是让老师认识你,让同学认识你的最好机会。
其次是练习,总结。
上面提到过,数学能力是慢慢通过大量的做题和实践中培养出来的,我们要不耐其烦的做题来提高数学素养。
再者就是课后拓展,有能力的同学课后可以做一些题来扩展自己的思维。
借助网络,借助参考书等等。
最后我再说说考试的内容吧。
期中考试和期末考试很多题都是课本上的,也有很多是上一学期考试的原题。
所以针对性的进行复习会起到意想不到的效果。
。
熟练解决课后的习题,考个好成绩不成问题
高等数学的线性代数和 概率论与数理统计难度大吗
线性代数有什么用
线性代数有什么用
这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题。
我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你:1、 如果你想顺利地拿到学位,线性代数的学分对你有帮助;2、 如果你想继续深造,考研,必须学好线代。
因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础。
例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论。
3、 如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲。
他在自己的数学名著《数学概观》中说:要是没有线性代数,任何数学和初等教程都讲不下去。
按照现行的国际标准,线性代数是通过公理化来表述的。
它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论。
…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此。
4、 如果毕业后想找个好工作,也必须学好线代:l 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学)。
恭喜你,你的职业未来将是最光明的。
如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料)。
l 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。
l 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象。
l 想搞经济研究。
好,知道列昂惕夫(Wassily Leontief)吗
哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门。
这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型。
列昂惕夫因此获得了1973年的诺贝尔经济学奖。
l 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划。
许多重要的管理决策是在线性规划模型的基础上做出的。
线性规划的知识就是线代的知识啊。
比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。
l 对于其他工程领域,没有用不上线代的地方。
如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解; 作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗
这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。
知道马尔科夫链吗
这个 “链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了。
l 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究。
嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用。



