欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 工业工程讲座心得体会

工业工程讲座心得体会

时间:2018-09-29 10:27

工业工程专业的就业前景怎样,毕业后一般做什么工作

1、工业的就业:  工业工程专业以生产管理作为主要方向,兼顾物流管质量管理,培养既掌握现代制造工程技术,又掌握现代管理科学理论的高级复合型应用人才。

专业口径宽,就业范围广,每年培养的毕业生供不应求,主要在外资、合资、大型企业就业。

  工业工程专业的毕业生大多在东南沿海地区工作,在北方也主要是北京和大连工作。

主要是在跨国公司尤其是世界500强的,从事IE(即工业工程的英文缩写)的工资大多不错,即使不从事IE的也可在机械行业有立足之地。

工业工程专业毕业生的平均薪资为 5011 元,其中应届毕业生工资3548元。

  2、工业工程专业毕业后就业方向:  工业工程专业毕业生不仅可在各类机械、电子、汽车等制造型企业从事工程设计、新产品开发、生产计划与控制、质量工程、设施规划与物流工程、供应链管理、设备管理、制造业信息化等工作,还可在各级政府、服务部门从事组织、协调等以技术为基础的系统管理工作或在科研机构从事相应的研究工作。

  3、工业工程专业毕业后就业岗位:  销售工程师、电气工程师、ie工程师、结构工程师、机械工程师、销售经理、软件工程师、工艺工程师、土建工程师、工业工程师、项目经理、技术支持工程师等。

我对工业设计的认识

工业设计在我国是新兴专业,它像所有新生命一样以强大的生命力茁壮成长。

只要谁用发展的眼光向未来一瞥,就会知道工业设计专业的发展前途。

广西工学院能够以长远的目光综观时代发展的趋势,兴办了这一专业,相信在机械工程系的领导与培养下,工业设计将会不断成长,走向成熟。

工业设计不是传统的美术专业的延伸,而是个独立的学科,有自己的完整体系。

它主要针对的是工业化以来“以机械为本”和“以无限享受”为目的的弊病和缺陷,提出“以人为本”的技术哲学观探索人与物的关系,规划设计未来的工作概念、生活概念、交通概念、能源概念。

在这种长远规划的考虑下,设计各种具体产品和环境。

工业设计的成长壮大,必须立足于我国现代企业工厂的需要,面向WTO的挑战,面向未来可持续发展道路,“高起点,高水平,高效率”地培养真正有本事的工业设计人才,这一思想是工业设计的主导思想。

也是必要要求。

机械工程系以这一思想主导下定然能将工业设计专业办出特色来。

时代在发展,工业设计也在成长。

就目前的国内外发展形势来看;工业设计这一专业在我国必然也必须迅速成长,甚至有可能成为热门专业。

当然,广西工学院也会加快步伐促使它的发展壮大。

在国外,工业设计专业也很早就发展了,现在已具有相当的规模,设计已深深地影响着社会的发展面貌,它们把“设计”视为发展,视为“第一手段”,试想,在如此高速发展的商业化社会,那里不需要设计

只有设计才能创新,只有创新才能发展。

在国内,受到社会历史条件的影响,受到传统思维习惯的束缚,工业设计迟迟没有兴趣,况且工业在我国仍不够发达。

工业设计起步晚,但是,自从加入工作以来,我国面临的各种挑战却为工业设计提供了机遇,工业的发展需要大量的工业设计师,接受WTO的挑战,就要发展自己,所以,工业设计也在迅速发展,并且日益受到高度的重视,工业设计将拥有极大的发展空间,其发展潜能不可估量。

在XX学院,随着“迎评”和“申硕”的大机遇,工业设计专业受到学院各级领导的关注重视,为工业设计专业配置先进的设备,任用经验丰富的工业设计教师,更重要的是,工业设计的学生素质高,思维好,接受能力强,能够对工业设计产生浓厚的兴趣。

目前为了接受“迎评”,领导,教师与学生连为一体,共同为推进工业设计专业设计专业发展而努力着,展望未来,工业设计发展前途光明。

工业设计专业的最终目的是培养有专业思维方式和行为方式的工业设计师,工业设计的发展期待,无论是教师还是学生,都应该熟悉大量的工业产品,具有较丰富的设计经验,并且具有创新意识和超前设计思维,能够做到群体合作,能够结合企业设计大量新产品。

可是,设计活动应与社会实践相结合,学校或老师组织参加各种设计比赛,举办各类专题讲座,共同交流设计思想和心得是很有必要的,机械工程系的领导和老师深刻认识到这一点,组织成立了“设计协会”,给学生们提供了发展的平台,每年邀请国内有名设计专家教授给学生授课,让学生们更了解自己的专业情况,经过多方努力,取得了与企业工厂合作,学习与实践相结合,为工业设计发展提供了广阔的天地。

经过全方位的努力,无论是XX学院的工业设计专业还是国内的工业设计专业,随着时代发展的潮流, 工业设计一定会发展更高的水平,具有更大的规模。

新技术讲座学习心得

工业4.0(Industrie 4.0)强调“智能工厂”和“智能生产”,其实质是实现信息化与自动化技术的高度集成,旨在保持德国制造业在全球的竞争优势。

当前,中国制造业正面临前所未有的挑战,受到高端制造业向发达国家回流,低端制造业向低成本国家转移的双重挤压,因此,学习和借鉴工业4.0的理念,建设智能工厂,推进两化深度融合,具有十分重要的现实意义,是推动中国制造业转型升级的一剂良方。

黄培总编的这段话很好的回答了我们为什么要学习工业4.0,我国现在所处的状况也如他所说,NIKE工厂转移到东南亚,惠普在中国裁员。

现在我们可能还没能达到工业4.0的高度,但是我们思想应该要有这样的高度,思想有多远就能走多远,这样我们才能在未来的变革涌流中立于不败之地。

工业4.0中提到信息的层次:数据-信息-知识-智能, 信息的价值=(V*T)S V—信息量;T—传播速度;S—共享范围。

工业4.0对信息的这种归类我的日常工作具有很好的指导作用,怎么把孤立的数据利用起来,怎样衡量获取的信息是否有价值

学习土木工程导论课的收获与感想

学习土木工程导论课的收获与感想班级:1033005姓名:姜超学号:1102800125摘要:本文通过本学期学习的相关知识,概述土木工程的发展历史和基本特征,对比国内外现代土木工程发展现状,分析在新时代背景下所面临的一系列问题,展望土木工程的发展趋势,明确土木工程的重要地位。

关键词:土木工程学习心得现状发展趋势第1章前言1.1学习《土木工程概论》的背景我是一名刚转专业到土木学院的学生。

去年的九月份,我怀着无比激动的心情来到哈尔滨工业大学,开始了我的大学生活。

在这里我的原专业是生物工程,而并不是我最热爱的土木工程,我渴求转变,于是我努力改变自己、不断学习,终于一年后我获得了转专业的机会,进入了自己梦寐以求的土木学院学习。

于是有了这样一个机会学习《土木工程概论》,并通过它增进自己对土木专业的了解。

1.2学习《土木工程概论》的心得《土木工程概论》以讲座的形式授课,使以往严肃、呆滞的上课气氛转变得更加活跃,是对大学课程授课方式的一次创新;以更加贴近生活的一些实例,比如汶川地震案例来分析、展现土木工程结构安全的重要性,使得我们对土木工程更加感兴趣,也进一步体现了土木工程的实用性;以邀请知名教授、院士、土木工程相关机构权威人士做的不同内容的报告极大地丰富了我们对于土木工程专业是什么、就业干什么、就业前景以及土木工程在国民经济和国防建设中的重要地位等一系列问题的认识。

除此之外,我收获最大的应该是作为一个土

化工前沿讲座总结

前沿讲座总结报完了各位老师精备的前沿讲座课收获颇多。

下面我就谈谈自己通过、查资料,经过思考后对化工领域的一些工艺和专业知识有了一定的理解,主要包括:甲醇转化制烯烃分子筛催化剂的设计制备及应用、炼化污水趋“零排放”及水系统优化先进技术综述、新型燃料电池电极催化剂的最新研究进展实例、清洁汽油生产技术现状及发展趋势、对二甲苯生产技术现状及发展、加氢催化剂研究新进展、石油烃类催化裂解生产低烯烃的基础研究、气体化合物相关的化学工程科学问题和FCC汽油加氢改质过程反应动力学的研究进展。

一、甲醇转化制烯烃分子筛催化剂的设计制备及应用目前全世界石油资源紧缺,原油价格一路飙升(最近油价一直在下降),天然气也是大幅上涨,有价无市。

制备乙烯丙烯主要是以石油和天然气为原料,但目前丙烯市场供不应求,就衍生出了“甲醇经济”即在过渡期内利用有效方法直接将现存天然气资源转化为甲醇和二甲醚,或回收燃烧生成的CO2及空气中的CO2用化学法转化为甲醇和二甲醚,以液体的形式储存能量作为运输燃料;另一方面催化转化为乙烯、丙烯。

当然也可以发展以煤为原料的丙烯制备技术格外重要,即所谓的“煤代油”战略。

通过煤制合成气,进而制甲醇,这是一个比较成熟的工业过程。

而甲醇制低碳烯烃(Methanol—To—Olefin,MTO)和甲醇制丙烯(Methanol—To—Propylene,MTP)是最有希望替代石油路线制烯烃的工艺,甲醇转化化学历程:①甲醇生成二甲醚和水,并

ABB工业机器人心得报告怎么写

一直以来, 机器人的应用领域主要分为: 工业机器人, 专业服务机器人, 和个人\\\/家用服务机器人. 服务机器人部分我们会在以后的文章里介绍; 这里只说工业机器人. 对我们普通老百姓来说, 工业机器人自然没有那些花哨的服务机器人那么有趣, 然而从商业利益来看, 现在工业机器人却仍然占据了整个机器人市场的大头: 在2008年, 它的市场规模大致在190亿美元 (包括工业机器人本身, 以及相关软件, 相关附件以及配置系统等), 而同时服务机器人市场估计在110亿美元左右 (相关数据参看该网站出的报告简要). 毕竟这个时代还是钱说了算, 于是我们可以看到现在国际机器人联合会的主席就来自工业机器人的一家龙头企业ABB了.工业机器人主要用在制造行业, 能够做焊接, 磨削, 喷涂, 搬运, 分拣, 装配, 包装等等. 和人相比, 优点主要有两个: 精确和稳定. 精确在于它一般能做到零点几个毫米级的运动控制, 稳定在于它可以24*7地这么做下去. 和其他自控工具相比, 优点主要是一个: 系统柔性大, 即所谓flexibility; 一套用于给BMW7系喷涂的机器人, 换上BMW5系,只要重新编个程就可以, 生产柔性很大.我个人更愿意把工业机器人看作是传统机械+电子自动化产品的延伸, 而不是披着神秘色彩的特高新科技领域. 大家也许都见过数控机床,能够以编程的方式, 让机器以极高的精度按指定路径运动, 从而完成各类工业加工应用. 那么绝大部分的工业机器人和数控机床差不多, 只是由于机械运动的方式不用, 而工业机器人往往有更大的自由运动的空间,而较大的应用灵活性. 好吧, 如果你还从没有见过一般工业机器人长什么样, 那么请点击该链接. 你可以看到,它一般是呈手臂型的, 而且底座是固定住, 无法移动的, 因此我们也把它叫做机械臂. 当然光一个机械臂还动不起来, 它需要背后的控制系统, 一般是像一个柜子一样的东西, 里面包含了逻辑控制\\\/运动规划的主计算机和电机驱动等等; 这个柜子一般会晾在机械臂一旁. 因此, 一套完整的可使用的机器人系统至少包括机械臂和控制柜, 另外通常还算上一些仿真和应用编程软件等. (于是相应地, 一个典型的工业机器人研发机构, 也自然设置成机械+电路+软件三部分小组).下面我们捎带说点机械性的知识, 不感兴趣者可略过 :)机械上来说, 一般机器人的关节可以有两种选择: 旋转式(rotational)和平移式(prismatic). 而一个机器人少则3个关节, 多则十多个关节, 关节的数量决定了机械臂末端能达到的三维位姿空间; 而根据这么多机械关节的不同组合, 也可以分出很多种工业机器人类型来: 支架式(笛卡尔坐标式)运动的所谓gantry robot, 这类机器人只能在支架上沿笛卡尔坐标系线性移动,一般用来工厂里搬重物, 做装备等. 这类机器人可以做的很大, 比如有做到近四十米,高八米的 (可以想象完全是一个可以内部移动的两层楼了...); 柱状\\\/球状机器人, 这里的柱\\\/球状是指机器人通过每个关节的运动, 使其末端点能达到的三维空间范围的形状. (这些个人倒不太常见, 可能是用在小型自动化领域内.)SCARA机器人(也可参见Wikipedia上此文), 有两个旋转关节和末端一个平移关节. 这种类型机器人在空间Z轴上是被锁住的, 因此常用来插螺钉啊,搬搬小东西啊之类的, 很灵活小巧, 速度也快. 看着干净, 还不占地. 最万能的多关节型机器人(articulated robot), 这种机器人一般有六个旋转关节(人的手臂也全是旋转关节, 不过关节数可比这类型机器人多多了...), 覆盖工作空间大(能扭出各种姿势来), 载重相对较高(更有力). 因此也是几个工业机器人大厂商的主打产品.并联机器人(parallel robot), 这类机器人手臂不像前面介绍的那样一段串联着一段, 最终连接到末端, 而是直接各段手臂直接连接到末端上. 好处是什么? 避免了手臂运动误差的串联叠加效应, 每一段手臂的控制都或多或少会有误差的, 如果是串联, 那么前一段手臂的误差会直接叠加在接下去一段的误差上; 这样一段串着一段, 误差也就一段积着一段了. (想象一下我们手臂的串联效应, 现在如果我要伸手去前方1米处的苹果, 于是规划好了以肩膀与上臂60度, 上臂与前臂30, 前臂和手掌20度的姿态可以拿到, 于是闭起眼睛驱动我们的手臂达到这个目标姿态, 但由于每个关节的控制总有1度左右的误差范围, 那么累加起来, 到最后手掌上, 离真正的目标姿态就有了3度的角度误差范围.(事实上, 由于几何关系, 误差不一定是简单的相加, 但这里就不细谈了); 而并联的好处便是消除了这种串联误差效应, 因而能达到很高的运动精度; 坏处呢? 那就是运动空间受限了, 有那么多支手臂一起连着末端, 还怎么伸展的出去呢? 关于这类机器人的历史可参看这里, 其常用在飞行模拟器上; 也有用在分拣上, 比如号称速度最快的工业机器人-ABB的FlexPicker, 最快能在一分钟之内做150次的物品拾起和放下, 常常用于在传输带上拣面包抓香肠等.接下来再说点工业机器人控制的知识:工业机器人的运动和我们人的运动的首要区别, 是它并没有视觉这样的末端运动的闭环控制. 人可以在发现手没有够到水果时, 继续前伸手, 直到观察认为可以拿到为止; 但工业机器人不可以, 它没有眼睛(没有图像检测系统)来查看它是不是伸到了目标点. 所以从这个角度来说, 它是一个开环控制. (至于开环控制和闭环控制的定义, 大家可以参见wikipedia的定义. 大致意思是闭环控制会将系统检测到的信息反馈到控制器里去, 而控制器会利用这个反馈信息区调整自己的控制指令, 使得被控制的变量可以更快\\\/准确\\\/稳定地达到目标值; 而开环控制则没有或忽略了反馈信息, 即控制器充满自信地一番计算后, 直接发出控制指令, 而至于被控制的量是不是达到目标值了, 就不理睬了. 最经典的反馈控制是PID, 在化工流程, 运动控制等有非常广泛的应用). 所以, 工业机器人的一个基本的运动控制过程一般是这样的: -> 用户输入目标点(如三维空间里的XYZ,以及姿态坐标) -> 机器人通过对自己手臂和关节的分析, 计算出每个关节应该达到的目标值(旋转关节就是指要转到哪个角度, 平移关节就是指要移动哪个距离上) -> 计算机将这些角度值发送给电机驱动程序-> 电机驱动程序利用一定的控制方法(比如这儿就可以用PID了)来使电机驱动到目标值; -> 结束大家于是看到, 机器人只管把关节电机驱动到目标值, 至于之后每个关节连起来后是不是就真的到达了目标点, 它就管不着了. 你也许会问, 要是机器人的手臂参数就有误差(e.g. 热胀冷缩而长度改变, 内部掉了灰尘而掐着关节怎么办), 那么计算得到的关节目标值就会包含这些误差, 于是加起来就更不对了, 难道也不考虑么? 是的, 如果是这样的话, 机器人也只能瞎着眼睛自顾自的往不准确的目标点跑去了. 你也许会再问, 那也简单, 给机器人加双眼睛不就行了么, 上面装个摄像头, 实时监测机器人末端是不是真正达到了目标点, 这样要是真没达到, 就可以把这误差信息反馈给机器人,机器人就可以调整控制, 不就可以这误差消除掉了? 不行, 至少现在可不行. 第一, 现有的图像算法很难通用地判别好一般工业环境下的一般机器人的末端, 更不用说稳定地判断机器人在三维空间里的立体姿态信息了(稳定而准确地通过摄像头获得空间信息本身是视觉\\\/机器人领域一个研究大难题, 这在以后的文章会再次提到). 第二, 现有的摄像头以及图像算法的本身又会带来误差问题. 有些工业应用对机器人运动控制的精度要求达到毫米级, 而如果摄像头本身像素跟不上, 机器人还没到目标点就报告成功, 那便适得其反了. 可见在工程环境下应用一个技术或产品, 其顾虑是非常多的, 其中有效, 稳定, 和鲁棒(robust)往往排在最前面. 放到工业机器人的设计里, 就是得让机器人不管天冷天热还是电磁辐射, 都得能正常得以预定精度运行, 不打折扣. 一套工业机器人系统的寿命要求十年不算长, 于是这十年就得保证能一直正常运行. 因此回到控制上, 我们就得非常小心得考虑每一个关节的特性模型. 现在市场上, 多关节运动机器人的到达精度一般能在零点几个毫米上, 什么意思呢? 就是如果你切着目标点出拉一根头发丝, 那么机器人闭着眼睛的每次运动都能恰好碰到这发丝而不会冲断. 你可以继而想象, 每一个关节本身的控制精度会达到什么程度!正是由于精度控制的重要性, 对于机器人厂商来说, 自家的机器人使用什么样的机械设计, 哪种控制方式, 采用哪套控制参数, 以及怎样的驱动电路, 可都是绝不外传的看门本领了.在基本的运动控制之上, 还有一层就是路径规划. 如果说运动控制是让机器人更好的达到一个点, 那么路径规划就是让机器人更好的走出一条(直\\\/曲)线来.比如我们会限定机器人以直线方式平移到第一个目标点, 然后以圆弧方式移到第二个点; 那么机器人就会按照一定的路径规划算法, 计算出整条路径要走的中间点, 然后利用运动控制, 循着中间点一直走到终点为止. 尽管理论研究上, 这方面的规划方法已经相当成熟了(基本上你已看不到高校会有老师还做工业机器人的基本路径规划...). 如果你曾了解过机器人学, 也会觉得这是最基本的小儿科知识了. 但一放到工程应用上, 就总会有更深的学问出来. 关键词只有一个: 精度. 前面提到天冷天热电磁辐射,这儿还有机器人本身的运动过程中的变化的惯性, 在这么多可变因素的影响下, 仍然要保持精度, 非得把机械物理控制原理给解剖地一清二楚不可. ABB在工业机器人领域算是一个领头了, 其机器人控制器用来打广告的主要技术就是所谓的True-Move,. 啥意思呢? 就是不管快跑慢走, 该走直线就走出直线, 转弯时该走圆就走出个正圆, 是truely right Move. 听着简单吧? 可别人就是做不出来或做不好, 而ABB就能靠它拿着成百上千万的订单.好, 现在有了路径规划来计算整条路径的运动点, 还有运动控制去到达每一个点, 那么一个工业机器人系统该有的功能算是完成了. 如果配上一套软件, 可以让用户进行连续地对多条运动路径进行编程, 并能把程序下载到机器人控制器上执行; 另外还有软件可以让用户进行仿真运动验证, 而不用每次都跑到真实机器人上去调试; 那么开一家机器人公司的技术储备就已经完善啦. 那么说到公司, 我们再看看当前工业机器人市场的情况.说到机器人制造商, 那么脑子里冒出来的一般就是瑞典的ABB, 美国的Comau, 日本的Denso, Epson, Fanuc, 德国的Kuka, 日本的Motoman等. 这些公司(或母公司)一般都在机械,电子, 或控制行业有至少半个世纪的经验积累, 因此有很强的技术优势. 其中ABB属于技术硬, 产品范围广, 但思维较稳重保守型, 不愿冒进, 属传统强势; 德国Kuka则秉承德国人做精做强的特点, 很快跟进,而且和德国宇航局(DLR)有不少合作, 后援很强. 经常会有些业内算是大胆的动作, 比如赞助足球机器人比赛RoboCup(因为那年我正好去了Atlanta参加Robocup小型组的比赛, 而Kuka是首席赞助商,所以印象深刻); 推出轻小型工业机器人(Light weight robot, LBR), 这是一个你可以放在桌台上,或拎在手上的机械臂, 其实是DLR的研究成果的市场化; 研发移动平台的机械臂; 把机器人放到迪士尼乐园里做刺激的游戏飞椅; 第一个推出能举起一吨重物的机器人; 经常把机器人放到好莱坞电影里客串等等; 日本的Denso,Epson做的多是小型化机器人, 所以在消费电子行业用的比较多, 比抓放手机,芯片之类的; 而Fanuc和Motoman则是和ABB激烈竞争的对手(类型的例子, 大家可以想象汽车行业里日本丰田,本田对老福特通用的挑战方式么?). 国内的情况较为惨淡, 沈阳新松还有哈工大曾经自己开发过工业用机器人, 甚至曾在一汽的生产线上使用过(但据说已不再用,应该是机器人自己带来的产品问题比效益多), 但已经不知道现在还在不在做了, 听说是基本转做其他类型的机器人去. 国家曾有一段时间支持过工业机器人的攻关开发, 也联合了多个工科牛校的工作者们, 但仍然没有做出能和以上这些公司竞争的市场化产品出来, 可以猜想主要地还是精度, 稳定度等工程老问题 (当然也有人将原因推在国内制造精度跟不上, 但其实在这样全球化的环境下, 基本元器件国内国外的都能购买, 并没有让国内企业一切打包制造的必要). 慢慢地, 国家也没有在这方面继续投入, 所以现在看来, 国内在自创工业机器人上基本是停滞状态(如果同学们看到还有教授博士拿这个捞钱做项目的, 就得小心看看是不是忽悠了); 如果有研究项目在做,那主要也偏向于工业机器人附件, 如视觉\\\/力感应等检测系统等. 从全球来看, 当前工业机器人总使用量在100万台左右, 并以平均每年10万台左右的速度增加. 使用量最大应该是日本(占全球1\\\/4~1\\\/3), 接着是德国北美韩国中国等; 09年由于经济危机, 使用量的增长受到了很大影响, 可能只有往年的一半左右. 从应用行业来看, 工业机器人一般分为汽车行业(automotive industry)和其他行业(general industry), 大致是各占一半. 汽车行业上一般有冲压, 动力总成,白车身,喷涂以及总装(都是汽车制造工业的术语)等, 每个工艺都可以有工业机器人的参与; 而其他行业则多了, 从搬运中华香烟到打磨波音飞机叶片, 只有想不到的各种千奇百怪的应用. 由于工业机器人技术的相对成熟, 以及日本机器人制造商的低价策略, 整个机器人市场对一套机器人系统的出价也在逐渐下降, 所以现在利润空间并不算高; 比如Kuka集团的08年税前利润率(EBIT\\\/Revenue)在4%, 而ABB的机器人公司也只是贡献了5~6%的税前利润率(相对ABB的电力和自动化公司几倍的销售额和利润率, 这可不算是有吸引力的), 这和IT行业Intel或Google动辄20~30%的利润率无法相提并论(当然即使IT业, 也要看公司的行业处境, 比如09年至今AMD的利润率就是负值了...). 当然, 我想这也都是和相关行业整体利润水平密切相关的, 比如自动化行业和制造行业(如典型地, 西门子和富士康的税前利润率均在5%左右或以下), 而工业机器人行业夹在二者中间, 自然高不起来太多. 当然, 利润空间的降低往往意味着成本降低或技术进步, 对消费者来说并不是坏事. 因此, 现在机器人研发的一个重点方向就是怎样降低成本, 以开发出白菜价般的工业机器人系统来, 希望通过这种方式来极大地扩张其应用行业的范围和深度. 而另一方面, 销售工程师们也在竭尽心力, 到处搜寻能够被机器人化的具体工艺来, 推动其自动化进程. 也许有一天, 人类会对体力劳动这个名词开始陌生, 因为和这个名字有关的所有工作都已被工业机器人来代替; 而这些机器人创造出来的财富, 便足以支持地球上整个人类去畅游在创造性的劳动乐趣中了.

谁有自动化专业知识前沿讲座的感想和体会 或者是课件

自动化一班的王鹏玖同学你好,我是你们李老师,这个问题请需要你自己思考,搜不到的

工业工程专业和自动化专业哪个就业前景好

客观的讲,自动化就业面会更宽,而工业工程的就业更区域性。

但个人觉得要看你个人的兴趣和职业规划,不能一味的看就业前景,因为前景好不代表你能实现你的想法,因为毕竟和自身有很大关系。

所以建议你先了解两者的区别,自己更喜欢哪个,在做选择。

在这里可以推荐一本通俗易懂的IE专业书籍——《IE实践家》,你可以全面了解下。

还有视频讲座

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片