
数学家高斯的故事
德国学家高斯(CarlFriedrichGauss1777-1855)是德国大,最杰出的科学家,如果以他的数学成就来说,很少在数学的分支里没有用到他的一些研究成果。
贫寒家庭出身 高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。
父亲由于贫穷,本身没有受过什么教育。
母亲在三十四岁时才结婚,三十五岁生下了高斯。
她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。
而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。
高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。
他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。
父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。
父亲念出钱数,准备写下时,身边传来微小的声音:“爸爸
算错了,钱应该是这样”。
父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎么样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。
另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。
当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式:1+2+3+4+……+98+99+100=
在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其它孩子算到头昏脑胀,还是算不出来。
最后只有高斯的答案是正确无误。
原来:1+100=101,2+99=101,3+98=101……50+51=101 前后两项两两相加,就成了50对和都是101的配对了即101×50=5050。
按:今用公式表示:1+2+……+n 高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。
高斯很喜欢读书,他往往带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,于是就在这发出微弱光亮的灯下,专心地看书。
等到疲劳和寒冷压倒他时,他才钻进被窝睡觉。
高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。
但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什么帮助。
他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。
这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。
高斯在十一岁的时候就发现了二项式定理(x+y)n的一般情形,这里n可以是正负整数或正负分数。
当他还是一个小学生时就对无穷的问题注意了。
有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克(Braunschweig)宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那么喜欢读书,于是就和他交谈,她发现他完全明白所读的书的深奥内容。
公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,于是就派人把高斯叫去宫殿。
费迪南公爵(Duke Ferdinand)很喜欢这个害羞的孩子,也赏识他的才能,于是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什么数学研究是更有用些,那高斯又怎么会成材呢
高斯的学校生涯 在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名的学院(程度相当于高中和大学之间)。
在那里他学习了古代和现代语言,同时也开始对高等数学作研究。
他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。
他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积分理论。
1795年10月他离开家乡的学院到哥庭根(Gottingen)去念大学。
哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯。
许多外国学生也到那里学习语言、神学、法律或医学。
这是一个学术风气很浓厚的城市。
高斯这时候不知道要读什么系,语言系呢还是数学系
如果以实用观点来看,学数学以后找生活是不大容易的。
可是在他十八岁的前夕,现在数学上的一个新发现使他决定终生研究数学。
这发现在数学史上是很重要的。
我们知道当n≥3时,正n边形是指那些每一边都相等,内角也一样的n边多边形。
希腊的数学家早知道用圆规和没有刻度的直尺画出正三、四、五、十五边形。
但是在这之后的二千多年以来没有人知道怎么用直尺和圆规构造正十一边、十三边、十四边、十七边多边形。
还不到十八岁的高斯发现了:一个正n边形可以用直尺和圆规画出当且仅当n是底下两种形式之一:k=0,1,2……十七世纪时法国数学家费马(Fermat)以为公式在k=0,1,2,3,……给出素数。
(事实上,目前只确定F0,F1,F2,F4是质数,F5不是)。
高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。
他是那么的兴奋,因此决定一生研究数学。
据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。
1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。
这结果数学上称为“代数基本定理”。
事实上在高斯之间有许多数学家认为已给出了这个结果的证明,可是没有一个证是严密的,高斯是第一个数学家给出严密无误的证明,高斯认为这个定理是很重要的,在他一生中给了一共四个不同的证明。
高斯没有钱印刷他的学位论文,还好费迪南公爵给他钱印刷。
二十岁时高斯在他的日记上写,他有许多数学想法出现在脑海中,由于时间不定,因此只能记录一小部份。
幸亏他把研究的成果写成一本叫《算学研究》,并且在二十四岁时出版,这书是用拉丁文写,原来有八章,由于钱不够,只好印七章,这书可以说是数论第一本有系统的著作,高斯第一次介绍“同余”这个概念。
数学我爱你大数学家的故事读后感
篇一:今天我读了《数学家华罗庚的故事》这一篇文章,华罗庚是我国著名的数学家,中国科学院院长。
华罗庚小时候是个调皮、贪玩的孩子,可对数学却很感兴趣。
他在读完中学后,因为家里贫穷,交不起学费,从此华罗庚失学了,他回到家后只能依靠卖点小东西生活。
不能上学并没有阻挡华罗庚爱学习的势头,他从此以后便自己学,一年到头华罗庚几乎每天都要用十几个小时来学习,勤奋好学的他走进了数学王国……。
1932年在熊庆来教授的帮助下,华罗庚到了清华大学数学系当一名管-理-员,他一人干几个人的事,却还在继续自学……。
功夫不负有心人,华罗庚终于成了我国著名的数学家!读了《数学家华罗庚的故事》我明白了,一个人不论干什么事都要坚韧不拔,那样才可以达到自己的要求,实现自己的梦想!暑假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。
比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。
高斯的主要成就
18岁的高斯发现了质布定理和最小二乘通过对足够多量数据的处,可以得到一个新的、概率性质的测量结果。
在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。
其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。
在高斯19岁时,仅用没有刻度的尺子与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。
并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
三角形全等定理 高斯在计算的谷神星轨迹时总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。
在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。
在这部著作的第一章,导出了三角形全等定理的概念。
天体运动论 高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。
并用这种方法,发现了谷神星的运行轨迹。
谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。
皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。
当时24岁的高斯得悉后只花了几个星期,通过以前的三次观测数据,用他的最小二乘法得到了谷神星的椭圆轨道,计算出了谷神星的运行轨迹。
尽管两年前高斯就因证明了代数基本定理获得博士学位,同年出版了他的经典著作《算术研究》,但还是谷神星的轨道使他一举名震科坛。
奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。
从此高斯名扬天下。
高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。
数学上的成就 高斯发明了最小二乘法原理。
高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。
高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。
高斯在1816年左右就得到非欧几何的原理。
他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。
他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。
1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。
高斯的曲面理论后来由黎曼发展。
高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。
其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。
地理测量 高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复 活节日期的计算公式。
在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。
通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。
出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。
高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。
高斯亲自参加野外测量工作。
他白天观测,夜晚计算。
五六年间,经他亲自计算过的大地测量数据,超过100万次。
当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。
在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。
汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。
在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。
为了用椭圆在球面上的正形投影理论以解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影的理论,并成为了微分几何的重要理论基础。
他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。
但他的非欧几何理论并未发表。
也许他是出于对同时代的人不能理解这种超常理论的担忧。
相对论证明了宇宙空间实际上是非欧几何的空间。
高斯的思想被近100年后的物理学接受了。
高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。
高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。
1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。
这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。
为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。
最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。
日光反射仪 出于对实际应用的兴趣,高斯发明了日光反射仪。
日光反射仪可以将光束反射至大约450公里外的地方。
高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪。
磁强计 19世纪30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。
他与韦伯(1804-1891)在电磁学的领域共同工作。
他比韦伯年长27岁,以亦师亦友的身份进行合作。
1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。
这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。
尽管线路才8千米长。
1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。
。
。
求《数学的魅力》读后感,谁写的好加20分哦,拜托啦
在《高斯奥特曼》一度停播期间,作为救场替补的作品就是《奈欧斯奥特曼》2002年,原本预定播出全12话,后来高斯恢复播出之后,电视上只是播了前2话。
然后是《奈克瑟斯奥特曼》2004年,因为剧情过于阴暗也过于成人化不受子供路线欢迎,也为了避免再次出现1974年拍摄《雷欧奥特曼》时圆谷险些破产的局面,导致剧情被迫腰斩而缩水,也破坏了全剧的连贯性,不过其成人化的和阴暗的风格还是赢得了不少奥迷的青睐,因此圆谷一夫也被捧为“神导”。
之后又是《麦克斯奥特曼》2005年,为了挽回因为前作奈克瑟斯收视率的惨败而导致平成奥特曼世界观开场辉煌收场惨烈的局面,圆谷不得不重新走平成复古的路线,即再引用昭和奥特曼的世界观。
时隔多年,圆谷将本作的主角再度设定为来自M78星云。
其影响力和原型则是来源于1967年的《赛文奥特曼》,又称作《奥特赛文》,虽然本作取得了较好的收视率,但仍然无法改变其是为了给后作打开成功拍摄道路的一个铺垫这个事实。
随后就是《梦比优斯奥特曼》2006年,为了纪念昭和奥特曼诞生40周年的纪念大作。
圆谷也迎来了这部他们真正想要大赚一笔的纪念作品了。
虽然YG在众多提案中最终敲定了走【子供】和【复古】路线,将内涵瞄准在【给后世留点什么】的观点上,在此基础上再对昭和作品进行总结和致敬。
新老人群两手抓的做法虽然是比较睿智的,但由于TSUBURAYA财政上的客观原因和新人发挥上的不稳定因素而使得许多本该更加精彩的演出变得不温不火。
低领人群缺乏昭和作品的回忆而无感受到剧本的原始感动,拥有回忆的成年人群又感受不到原本期待的剧本震撼,只能说是YG再次打错了如意算盘而人财两空。
当然,梦比优斯的亮点也有不少,归根结底就是两个字【诚意】。
剧情有了一条轴心,使得原本独立的世界观相互间产生了联系。
这条轴心就是从奈克瑟斯中的【纽带】演化而来的友情与成长,这是与前作【MAX】的最大不同之处,本作也花去了比MAX甚至【N系列】都要大的多的精力与人力。
而梦比优斯留给我们的,也远比他带走的要多。
2007年,《赛文奥特曼X》诞生,顾名思义,就是为了纪念老赛文的作品。
仍然继承了老赛文的剧情成人、诡异、悬疑的风格。
其战斗场面大大减少,通常是一击必杀结束战斗。
因此是最挨批的地方,自然,本作的重点也和老赛文一样,不是战斗。
但是从其仅有的战斗场面来看,其战斗风格比老赛文更强悍。
原本老赛文的身份是M78星云恒星观测点第340号观测员,而这次的赛文X则是赛文在平行世界的身姿。
在一般的看法下就是不会再拍摄奥特曼了,但是圆谷没有,其后圆谷又送上了《超级银河大怪兽格斗》,分两季,共26集。
顾名思义,就是怪兽们之间的大乱斗,由怪兽们当主角的一部题材作品。
第一季是为了纪念奥特曼的开山始祖《初代奥特曼》,第二季则是为了纪念奥特曼系列具有史诗般地位的《赛文奥特曼(奥特赛文)》,与之前所有作品不同的是,主人公是通过操控怪兽来与其他怪兽战斗的故事,除了哥莫拉、雷德王以外,历代奥特曼中所有著名的经典怪兽都会一一亮相。
2009年,剧场版电影《大怪兽格斗超银河传说》辉煌亮相,历代昭和世界观的奥特曼都有亮相,以及增加了两位新角色,贝利亚奥特曼,本作的大反派。
以及赛文奥特曼的儿子,赛罗奥特曼。
就其知名度和人气而言,就不用我多说了。
2013年,日本圆谷制作公司为纪念公司成立50周年,将着手制作奥特曼系列最新作品《银河奥特曼》。
这将是自2007年播出《赛文奥特曼X》后近六年来首度推出电视新作。
数学家的故事,要四个,简短的
1、16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。
瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。
这是一句既刻划螺线性质又象征他对数学热爱的双关语 2、20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为计算机之父.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁. 3、伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。
家庭的影响使伽罗华一向勇往直前,无所畏惧。
1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。
老师们对他的评价是“只宜在数学的尖端领域里工作”。
4、阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。
父亲是位数学家兼天文学家。
阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。
在这座号称智慧之都的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
数学王子高斯的简介
德国大数学家高斯 ( Carl Friedrich Gauss 1777-1855 ) 是德国最伟大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门数学的分支里没有用到他的一些研究成果。
贫寒家庭出身 高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。
父亲由於贫穷,本身没有受过什麼教育。
母亲在三十四岁时才结婚,三十五岁生下了高斯。
她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。
而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。
高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。
他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。
父亲在喃喃的计数,最後长叹的一声表示总算把钱算出来。
父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸
算错了,钱应该是这样.....。
」 父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。
另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。
当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式: 1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其他孩子算到头昏脑胀,还是算不出来。
最後只有高斯的答案是正确无误。
原来 1 +100= 101 2 + 99 = 101 3 + 98 = 101 . . . 50 + 51 = 101 前後两项两两相加,就成了50对和都是 101的配对了即 101 × 50 = 5050。
按:今用公式表示 1 + 2 + ... + n 高斯的家里很穷,在冬天晚上吃完饭後,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。
高斯很喜欢读书,他往往带了一梱芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的灯下,专心地看书。
等到疲劳和寒冷压倒他时,他才钻进被窝睡觉。
高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。
但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什麼帮助。
他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。
这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。
高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般情形,这里 n可以是正负整数或正负分数。
当他还是一个小学生时就对无穷的问题注意了。
有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈,她发现他完全明白所读的书的深奥内容。
公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。
费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也赏识他的才能,於是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更有用些,那高斯又怎麼会成材呢
什么是高斯模式,高斯模式的假设条件是什么?
满意回答检举|2012-12-01 10:33 15岁时,高斯进入卡罗利努姆学院学习。
18岁时来到著名的哥廷根大学,数学的领域里还有更广阔的天地等待这位数学天才去探索。
据说高斯在哥廷根大学时,有次有事迟到,赶到教室时几乎都已经下课了。
高斯走进教室后,发现教师不在,黑板上写着几道题。
高斯以为这些题目是今天的作业题,便把题目记下来。
当晚,他花了一整夜时间去研究这些数学题,没想到的是,这些题目异乎寻常地难。
高斯直到天亮也只解决了一道题,第二天他很沮丧地找到老师,把这些都告诉了他。
他的老师异常震惊:“这些可都是数学史上最著名的难题啊,你竟然只花一个晚上就解决了一道
”而高斯解决的这道难题,就是困扰了数学家两千年之久的正十七边形尺规作图问题。
那一年,高斯只有19岁
尺规作图,是从古希腊时期的几何学家们开始就一直在探讨的问题,作图所用的直尺,是没有刻度的,尺规作图最简单的应用就是平分角。
古希腊人很早就知道了许多正多边形的作图方法。
显然,正2N边形(N>=2) 都是很用以作出来的。
正三边形能做出来,因此正2N×3边形(N>1)也一样能作出来。
而正五边形和正十五边形也是能作出来的。
如此一来,边数较少的正多边形就只剩下正七、正九、正十一、正十三、正十七这些奇数多边形了。
这些问题一直没有解决。
而高斯虽然没能解决正七边形作图等问题,但是却解决了正十七边形的作图问题。
但数学家绝对不会只满足于一个特例。
正十七边形作图问题的解决,反而刺激了高斯思考更深入的问题:什么样的多边形是可以用尺规作图作出来而什么样的不能
经过深入的思考,他得出了一个重要结论:一个正多边形,只要边数是质数的费马数【注】,就可以用尺规作图将其作出。
而这时的高斯,才不过24岁。
在他的面前,不知道还有多少数学的秘密等着他去发现…… 【注】:费马数:法国数学家费马曾经提出一个猜想: 必然是质数,这样的数被人们称为费马数。
后来欧拉发现,当N=5时,猜想便不成立。
后来的人们也没有发现N更大时结果是质数。



