欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 读后感 > 聪明的华罗庚读后感

聪明的华罗庚读后感

时间:2017-06-20 09:40

读了华罗庚的故事有什么感想的作文

华罗庚是1910年11月12日出生于江苏金坛县一个小商人的家庭。

他天资聪慧,自幼酷爱数字。

19岁那年,他凭着自学的数学功底,指出一位大学教授的论文有错,并写出了《苏家鸲之代数的五次方程式解法不能成立之理由》。

后来他长大后去了美国。

月薪达20000美元,有小汽车和洋楼。

但他常说:“梁国虽好,非久居之乡

”后来他回到回到祖国,于1958年去世,享年75岁。

聪明在于学习,天才在于积累的读后感

很学为我很笨,认为自己是没习数学的天赋。

智商高特别高、低的各分之三左右,我们可以看到很多智商很高的人“泯然众人”,更重要的是勤奋与积累。

“学问是长期积累的,我们不停地学,不停地进步,总会积累起不少的知识。

”华罗庚作为一名数学大师,他自学成才的经历激励无数中华学习投身数学。

大师经典的论学观点,可谓字字珠玑,闪烁着智慧的光芒,愈久弥新。

我们今天的前少年跟着大师投身数学学习,掌握科学的方法,学好数学。

实现大师的遗志,在21世纪成为数学强国。

读《华罗庚》有感400字

读《华罗庚》有感 寒假里,我读了很多书。

今天,我要向大家 介绍一本好书——数学奇才《华罗庚 》。

这本书讲述的是华罗庚一生的经历,童年的他调皮,贪玩,被老师骂过“笨蛋”“懒人”,断言没出息。

大一点时被说成呆子,他因家中贫穷中途辍学;后来因一场伤寒留下终身残疾,成了一个瘸子。

然而就是这样一个平凡又受挫折的孩子,通过自学,就像一颗光芒四射的巨星,腾空而起,一下子照亮了中国和世界数学的天空。

书中有一篇呆子看“天书”中写到,华罗庚因家境贫穷辍学在家。

有个叫王维克的数学老师发现他很有数学天分,就借给他几本书(当时人们称这几本书为“天书”)。

华罗庚看得走火入魔,有一次,他在家看店,外面下着雨,有位顾客进来开门声挺大,他却没听见,俯在柜台上写写算算。

那个顾客对他说:“买两支线。

”他楞是没听见,还沉浸在他的数学世界里。

那个顾客只好敲敲柜台他才如梦初醒,傻傻地望着对方。

顾客又说了一遍:“买两支线。

”他立马脱口而出:“835729。

”把顾客也吓蒙了,以为他家卖金线、、、、、、 从凡人到天才,这中间华罗庚走过怎样的路

又有哪些成功的秘诀

本书中的故事,可以告诉你一切。

我从书中懂得了,玩不是缺点,小孩子的聪明智慧可以在玩中得到发展。

急求10篇关于数学家的故事或数学发展史的读后感大约400字左右

这些天,阅读了校长给数学教师推荐的《人民教育》中蔡宏基的《捕捉数学史中的教育基因》一文。

刚开始,看到以“字母表示数”为例,正好是我们年级选择上实验课的内容,所以粗略浏览了导入和体验部分,觉得我们如果要上这节课,也会如此设计,于是就没有看下去。

想着读了还要交体会,于是拿起来重新看了一遍,读到文章的反思和运用部分让我耳目一新、心为之一震。

在多年注重课堂形式多样之后,这节课却以纯数学的设计,体现了数学本身的魅力。

在这节课蕴含了丰富的数学学科知识和深厚的学科素养,还有就是从数学发展史较好的捕捉了教育基因,是数学学习变得丰富有趣。

我想,这样的一节课一定能让学生感受到数学本身的乐趣,并爱上数学这门学科。

读完这篇文章,我思绪澎湃,作为数学教师的我,对数学有了一种全新的感受,原来数学是如此之美,数学课也能上得如此精彩

想想之前的我,每当家长询问为什么孩子不喜欢学数学时,我一直都很理直气壮的回答,是因为数学是一门很抽象,枯燥的学科。

学完此文,我深感惭愧,产生了这样的疑问:是数学真的就是枯燥乏味,还是教数学的我们没有了解数学的乐趣呢

我也在思考着,为什么在我的数学课中没能将数学之美传递给学生,让学生被数学的魅力吸引而萌发浓厚的兴趣呢

要做到这些,我缺少了什么

带着这些疑问和思考,结合对自己教学的反思,我觉得作为数学教师的我,在教学中,也能从设计中较好的体现数学基础知识,突破教学重、难点,也能考虑学生的特点,设计有趣的练习帮助学生学习数学。

例如:在学习对称图形时,我能让学生在设计图案时感受图形变换之美。

可是,根本没能深入从数学的角度去思考、挖掘出数学本质的美并以此去引导学生,由此去探究数学魅力,激起学习的兴趣。

现如今的小学数学教师,很少有接受过高等数学的教育的,大部分教师还是中师毕业,然后去进修到大专的,有些进修的也不是数学专业,我也是如此。

所以以我们的知识和能力,要上出一节如此精彩的数学课,我想我还有很多不足,具体如下:首先是本人对数学本质美的认识和对数学发展史的了解欠缺。

学生之所以不喜欢这门学科,可能是因为他们不了解这门学科,没有认识到这门学科的美妙之处,如果我们教师能在课堂上时不时的向孩子们讲一些数学的历史,一些数学家的故事,也许真能找到一条培养学生的数学兴趣的捷径。

这不禁让我想起在校本思维训练课程中的尝试,正是那一个个的数学故事,让学生感受到了数学的趣味,才使得孩子们都积极的参与到学习当中。

我何不将之带到数学课堂当中呢

要做好这些,必须先提高自己在这方面的储备。

通过上网收集资料,我将在08阅读年中,于本学期认真阅读M·克莱因的《古今数学思想》一书,了解数学的乐趣所在,下学期将阅读有关数学发展史的书籍,提高对数学学科发展的了解。

第二是对中学数学的教学内容不了解,从而在教学设计中很少思考中小学数学的衔接问题,没有从的大教学发展观去设计教学。

以前就听到过中学数学教师埋怨小学数学教师的话,当时很是愤愤不平。

可读了这篇文章后,感到确实如此。

要实现小学到中学的顺利过渡,我将在今后的阅读计划中加入学习初中,甚至高中数学课本的内容,提高数学学科知识的储备。

第三是满足现状,不思进取。

之前的我,还很满足于目前的状况,所教班级在年级排名不错,公认的年级差班成绩也在不断提高,达到了中等。

在每学期的实验课中获得了几次“十节好课”,感觉真不错。

可读完文章,我感觉自己要这样下去,就会跟不上时代脉搏。

感谢校长推荐了这样一篇好文章,不止是找到自己的不足,更明确了个人发展的方向。

最后,引用屈原的“路漫漫兮,其修远兮,吾将上下而求索”结束。

华罗庚得主要成就有那些

华一生都是在国难中挣他常说他的一生遭遇三大劫难。

自先是童年时,家贫,失学,患重病,腿残废。

第二次劫难是抗日战争期间,孤立闭塞,资料图书缺乏。

第三次劫难是“文化大革命”,家被查抄,手槁散失,禁止他去图书馆,将他的助手与学生分配到外地等。

在这等恶劣的环境下,要坚持工作,做出成就,需付出何等努力,需怎样坚强的毅力是可想而知的. 早在40年代,华罗庚已是世界数论界的领袖数学家之一。

但他不满足,不停步,宁肯另起炉灶,离开数论,去研究他不熟悉的代数与复分析,这又需要何等的毅力寻勇气

华罗庚善于用几句形象化的语言将深刻的道理说出来。

这些语言简意深,富于哲理,令人难忘。

早在 SO年代,他就提出“天才在于积累,聪明在于勤奋”。

华罗庚虽然聪明过人,但从不提及自己的天分,而把比聪明重要得多的“勤奋”与“积累”作为成功的钥匙,反复教育年青人,要他们学数学做到“拳不离手,曲不离口”,经常锻炼自己。

50年代中期,针对当时数学研究所有些青年,做出一些成果后,产生自满情绪,或在同一水平上不断写论文的倾问,华罗庚及时提出:“要有速度,还要有加速度。

”所谓“速度”就是要出成果,所谓‘加速度”就是成果的质量要不断提高。

“文化大革命”刚结束的,一些人,特别是青年人受到不良社会风气的影响,某些部门,急于求成,频繁地要求报成绩、评奖金等不符合科学规律的做法,导致了学风败坏。

表现在粗制滥造,争名夺利,任意吹嘘。

1978年他在中国数学会成都会议上语重心长地提出:“早发表,晚评价。

”后来又进一步提出:“努力在我,评价在人。

”这实际上提出了科学发展及评价科学工作的客观规律,即科学工作要经过历史检验才能逐步确定其真实价值,这是不依赖人的主观意志为转移的客 观规律。

” 华罗庚从不隐讳自己的弱点,只要能求得学问, 他宁肯暴露弱点。

在他古稀之年去英国访问时,他把成语“不要班门弄斧”改成“弄斧必到班门”来鼓励自己。

实际上,前一句话是要人隐讳缺点,不要暴露。

华罗庚每到一个大学,是讲别人专长的东西,从而得到帮助呢,还是对别人不专长的,把讲学变成形式主义走过场

华罗庚选择前者,也就是“弄等必到班门”。

早在50年代,华罗庚在《数论导引》的序言里就把搞数学比作下棋,号召大家找高手下,即与大数学家较量。

中国象棋有个规则,那就是“观棋不语真君子,落子无悔大丈夫”。

1981年,在淮南煤矿的一次演讲中,华罗康指出:“观棋不语非君子,互相帮助;落子有悔大丈夫,改正缺点。

”意思是当你见到别人搞的东西有毛病时,一定要说,另一方面,当你发现自己搞的东西有毛病时,一定要修正。

这才是“君子”与“丈夫”。

针对一些人遇到困难就退缩,缺乏坚持到底的精神,华罗庚在给金坛中学写的条幅中写道:“人说不到黄河心不死,我说到了黄河心更坚。

” 人老了,精力要衰退,这是自然规律。

华罗庚深知年龄是不饶人的。

1979年在英国时,他指出:“村老易空,人老易松,科学之道,戒之以空,戒之以松,我愿一辈子从实以终。

”这也可以说是他以最大的决心向自己的衰老作抗衡的“决心书”,以此鞭策他自己。

在华罗索第二次心肌梗塞发病的,在医院中仍坚持工作,他指出:“我的哲学不是生命尽量延长,而是昼多做工作。

”生病就该听医生的话,好好休息。

但他这种顽强的精神还是可贵的。

总之,华罗庚的一切论述都贯穿一个总的精神,就是不断拼搏,不断奋进。

祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。

祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。

他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。

他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。

我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。

到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。

他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。

这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。

公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。

那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。

祖冲之当场用他研究的数据回驳了戴法兴。

戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。

”祖冲之一点也不害怕。

他严肃地说:“你如果有事实根据,就只管拿出来辩论。

不要拿空话吓唬人嘛。

”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。

但是宋孝武帝还是不肯颁布新历。

直到祖冲之死了十年之后,他创制的大明历才得到推行。

尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。

他更大的成就是在数学方面。

他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。

他的最杰出贡献是求得相当精确的圆周率。

经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。

他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。

祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。

在我国北宋时代,有一位博学多才、成就显著的科学家,他就是沈括 沈括,字存中,宋仁宗天圣九年(公元1031年)生于浙江钱塘(今浙江杭州市)一官僚家庭。

他的父亲沈周(字望之)曾在泉州、开封、江宁做过地方官。

母亲许氏,是一个有文化教养的妇女。

沈括自幼勤奋好读,在母亲的指导下,十四岁就读完了家中的藏书。

后来他跟随父亲到过福建泉州、江苏润州(今镇江)、四川简州(今简阳)和京城开封等地,有机会接触社会,对当时人民的生活和生产情况有所了解,增长了不少见闻,也显示出了超人的才智。

沈括精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和政治家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。

他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。

《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的地位。

日本数学家三上义夫曾经说:沈括这样的人在全世界数学史上找不到,只有中国出了这么一个。

英国著名科学史专家李约瑟博士称沈括的《梦溪笔谈》是中国科学史上的坐标。

高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。

高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。

幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。

1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。

从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。

高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。

他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。

一、数学竞赛的简史 数学竞赛与体育竞赛相类似,它是青少年的一种智力竞赛,所以苏联人首创了数学奥林匹克这个名词。

在类似的以基础科学为竞赛内容的智力竞赛中,数学竞赛历史最悠久,参赛国最多,影响也最大。

比较正规的数学竞赛是1894年在匈牙利开始的,除因两次世界大战及1956年事件而停止了7届外,迄今已举行过90多届。

苏联的数学竞赛开始于1934年,美国的数学竞赛则是1938年开始的。

这两个国家除第二次世界大战期间各停止了3年外,均己举行过50多届,其他有长久数学竞赛历史的国家是罗马尼亚(始于1902年)、保加利亚(始于1949年)和中国(始于1956年)。

1956年,东欧国家和苏联正式确定了国际数学奥林匹克的计划,并于1959年在罗马尼亚布拉索夫举行了第一届国际数学奥林匹克(InternationaI Mathematics Olympiad,简称1MO)。

以后每年举行一次。

除1980年因东道国蒙古经济困难停办外,至今共举行过40届。

参赛国家也愈来愈多。

第一届仅7个国家参加,至1980年已有23个;到1990年,则有54个。

必须说明在上述历史之前已有一些数学竞赛活动,例如苏联人说,在1886年帝俄时代就举行过数学竞赛。

又如1926年在中国上海市举办过包括学生、银行和钱庄职员在内的珠算比赛,中华职业学校一年级学生,16岁的华罗庚凭智慧夺得了冠军。

这些都是关于数学竞赛的佳话,不列入正史。

二、数学竞赛的发展 数学竞赛活动是由个别城市,向整个国家,再向全世界逐步发展起来的。

例如苏联的数学竞赛就是先从列宁格勒和莫斯科开始,至1962年拓展至全国的,美国则是到1957年才有全国性的数学竞赛的。

数学竞赛活动也是由浅入深逐步发展的。

几乎每个国家的数学竞赛活动都是先由一些著名数学家出面提倡组织,试题与中学课本中的习题很接近,然后逐渐深入,并有一些数学家花比较多的精力从事选题及竞赛组织工作,这时的试题逐渐脱离中学课本范围,当然仍要求用初等数学语言陈述试题并可以用初等数学方法求解。

例如苏联数学竞赛之初,著名数学家柯尔莫哥洛夫、亚历山大洛夫、狄隆涅等都参与过这一工作。

在美国,则有著名数学家伯克霍夫父子、波利亚、卡普兰斯基等参与过这项工作。

国际数学奥林匹克开始举办后,参赛各国的备赛工作往往主要是对选手进行一次强化培训,以拓广他们的知识,提高他们的解题能力。

这种培训课程是很难的,比中学数学深了很多。

这时就需要少数数学家专门从事这项活动。

数学竞赛搞得好的国家,竞赛活动往往采取层层竞赛、层层选拔这种金字塔式的方式进行。

例如。

苏联分五级竞赛,即校级、市级、省级、加盟共和国级和全苏竞赛,每一级的竞赛人数约为前一级的1\\\/10,还设立了8个专门的数学学校(或数学奥林匹克学校),以培养数学素质好的学生。

数学竞赛虽然历史悠久,但最近10年有很大发展和变化,有关工作愈趋专门,我们要认真注意其发展,认识其规律。

三、数学竞赛的作用 1. 选拔出有数学才能的青少年。

由于数学竞赛是在层层竞赛,水平逐步加深的考核基础上选拔出优胜者,优胜者既要有踏实广泛的数学基础,又要有灵活机智的头脑和富于创造性的才能,所以他们往往是既刻苦努力又很聪明的青少年。

这些人将来成才的概率是很大的。

数学竞赛活动受到愈来愈多国家的注意,在世界上发展得那么快的重要原因之一就在于此。

在匈牙利,著名数学家费叶、黎茨、舍贵、寇尼希、哈尔、拉多等部曾是数学竞赛的优胜者。

在波兰,著名数论专家辛哲尔是一位数学竞赛优胜者。

在美国,数学竞赛优胜者中后来成为菲尔兹数学奖获得者的有米尔诺、曼福德、奎伦三人,也有不少优胜青成为著名的物理学家或工程师,如著名力学家冯?卡门。

2. 激发了青少年学习数学的兴趣。

数学在一切自然科学、社会科学和现代化管理等方面都愈来愈显得重要和必不可少。

由于电子计算机的发展,各门科学更趋于深入和成熟,由定性研究进入定量研究。

因此青少年学好数学对于他们将来学好一切科学,几乎都是必要的。

数学竞赛将健康的竞争机制引进青少年的数学学习中,将激发他们的上进心,激发他们的创造性思维。

由于数学竞赛是分级地金字培式地进行的,所以国家级竞赛之前的竞赛,试题基本上不跳离中学数学课本范围,适合广大青少年参加.但也要承认人的天赋和数学素质是有差别的,甚至会有很大的差别。

国家级竞赛及其以后的竞赛和培训,只能在少数人中拔高进行,少数有很好数学素质的青少年是吃得消的。

例如,澳大利亚少年托里?陶在他10岁、11岁和12岁时分别在第27、28和29届国际数学奥林匹克上获得铜牌、银牌和金牌。

在数学竞赛的拔高阶段当然需要一些大学老师和数学专业研究人员参与。

3. 推动了数学的教学改革工作。

数学竞赛进入高层次后,试题内容往往是高等数学的初等化。

这不仅给中学数学添人了新鲜内容,而且有可能在逐步积累的过程中,促使中学数学教学在一个新的基础上进行反思,由量变转入质变。

中学教师也可在参与数学竞赛活动的过程中,学得新知识,提高水平,开阔眼界,事实上,己有一些数学教学工作者在这项活动中逐渐尝到了甜头。

因此数学竞赛也可能是中学数学课程改革的催化剂之一,似乎比自上而下的灌输式的办法为好。

60年代初,西方所谓中学数学教学现代化运动即是企图用某些现代数学代替陈旧的中学数学内容,但采取了由上往下灌输的方法,结果既脱离教师水平,也脱离学生循序学习所需要的直观思维过程。

现在基本上被风一吹,宣告失败了。

相反地,数学竞赛也许是一条途径。

在中国,中学生的高考压力很重,中学教师为此而奔波,确有路子愈走愈窄之感。

数学竞赛或许能使中学数学的教学改革走向康庄大道。

四、竞赛数学--奥林匹克数学 随着数学竞赛的发展,已逐渐形成一门特殊的数学学科-竞赛数学,也可称为奥林匹克数学。

将高等数学下放到初等数学中去,用初等数学的语言来表述高等数学的问题,并用初等数学方法来解决这些问题,这就是竞赛数学的任务。

这里的问题甚至解法的背景往往来源于某些高等数学。

数学就其方法而言,大体上可以分成分析与代数,即连续数学与离散数学。

由于目前微积分不属于国际数学奥林匹克的范围,所以下放离散数学就是竞赛数学的主体。

很多国际数学奥林匹克的试题来自数沦、组合分析、近世代数、组合几何、函数方程等。

当然也包含中学课程中的平面几何。

竞赛数学又不同于上述这些数学领域。

通常数学往往追求证明一些概括广泛的定理,而竞赛数学恰恰寻求一些特殊的问题,通常数学追求建立一般的理论和方法,而竞赛数学则追求用特殊方法来解决特殊问题;而且一旦某个问题面世,即成为陈题,又需继续创造新的问题。

竞赛数学属于硬数学范畴,它通常也与纯粹数学一样,以其内在美,包括问题的简练和解法的巧妙,作为衡量其价值的重要标准。

竞赛数学不能脱离现有数学分支而独立发展,否则就成了无源之水,所以它往往由某些领域的专家兼搞,如参加国际数学奥林匹克的中国代表团的出色教练单樽,就是一位数论专家。

国际数学奥林匹克的精神是鼓励用巧妙的初等数学方法来解题,但并不排斥高等数学方法和定理的使用。

例如在第31届国际数学奥林匹克中,有学生在解题时用到了贝特朗假设,也称车比雪夫定理,即当n大于1时,在n和2n之间必定有一个素数,还有人在解题时用到了谢尔宾斯塞定理,即一个平方数表成s个平方数之和的通解形式。

这些定理须在华罗庚所著的《数论导引》(大学数学系研究生教本)或更专门的书中才能找到。

这样不仅已是杀鸡用牛刀,而且按某外国教练的说法,他们在用原子弹炸蚊子,但蚊子被炸死了

这样做是允许的,但不是国际数学奥林匹克所鼓励的。

国际数学奥林匹克的一个难试题,经简化后的证明要写三四页,这不仅大大超过中学课本的深度,也不低于大学数学系一般课程的深度,当然不包括大学课程的广度。

实际上,大学数学系课程中,一条定理的证明长达3页者并不多。

一个好试题的解答,大体上相当于一篇有趣的短论文。

因此用这些问题来考核青少年的数学素质是相当科学的。

它们的解决需要参赛者有相当宽广的数学基础知识,再加上机智和创造性。

这与单纯的智力小测验完全不同。

国际上的数学竞赛范围,大体上从小学四年级到大学二年级。

小学生因基础知识太少,这期间的所谓数学竞赛,其实是智力小测验型。

对大学生应强调系统学习,要求对数学有一个整体了解。

因此数学竞赛的重点应是中学,特别是高中。

现在已经积累了丰富的数学竞赛题库,可供中学师生和数学爱好者练习。

国际上也已经有了竞赛数学的专门杂志。

五、数学竞赛在中国 我国的数学竞赛始于1956年,当时举办了北京、上海、武汉、天津四城市的高中数学竞赛。

华罗庚、苏步清、江泽涵等最有威望的数学家都积极出面领导并参与这项工作。

但由于左的冲击,至1965年,只零零星星地举行过6届,文化大革命开始后,数学竞赛更被看成是封、资、修的一套而被迫全部取消。

直到四人帮被打倒,我国的数学竞赛活动于1978年又重新开始,并从此走上了迅速发展的康庄大道。

1980年前的数学竞赛属于初级阶段,即试题不脱离中学课本。

1980年以后,逐渐进入高级阶段。

我国于1985年第一次参加国际数学奥林匹克,1986年开始名列前茅,1989和1990年连续两年获得团体总分第一。

我国成功地举办了第31届国际数学奥林匹克,这标志着我国的数学竞赛水平已达到国际领先水平。

第一,中国获得团体总分第一,说明我国金字塔式的各级竞赛和选拔体系及奥林匹克数学学校和集中培训系统是完善的,第二,我国数学家对35个国家提供的100多个试题,进行了简化与改进,从中推荐出28个问题供各国领队挑选,结果被选中5题(共需6题),这说明我国竞赛数学的水平是相当高的。

第三,各国学生的试卷先由各国领队批改,然后由东道主国家组织协调认可。

我们组织了近50位数学家任协调员,评分准确、公平,提前半天完成了协调任务,说明我国的数学有相当的实力。

第四,这是首次在亚洲举行国际数学奥林匹克,中国的出色成绩鼓舞了发展中国家,特别是亚洲国家。

除此而外,这次竞赛的组织工作也是相当不错的。

在中国,从老一辈数学家,中青年数学家,直至中小学老师,成千上万人的共同努力,才在数学竞赛方面获得了今天的成就。

这里特别要提到华罗庚,他除倡导中国的数学竞赛外,还撰写了《从杨辉三角谈起》《从祖冲之的圆周率谈起》《从孙子的神奇妙算谈起》《数学归纳法》和《谈谈与蜂房结构有关的数学问题》5本小册子,这些是他的竞赛数学作品。

我国在1978年重新恢复数学竞赛后,他还亲自主持出试题,并为试题解答撰写评论。

中国其他优秀竞赛数学作品有段学复的《对称》闵嗣鹤的《格点和面积》姜伯驹的《一笔画和邮递路线问题》等。

这里还应提到王寿仁,他从跟华罗庚一起工作起,一直到今天,始终领导并参与了数学竞赛活动。

他带领中国代表队3次出国参加国际数学奥林匹克,并领导了第31届国际数学奥林匹克的工作。

1980年以后,我国基本上由中青年数学家接替了老一辈数学家从事的数学竞赛工作,他们积极努力,将中国的数学竞赛水平推向一个新的高度。

裘宗沪就是一位突出代表。

他从培训学生到组织领导数学竞赛活动,从3次带领中国代表队参加国际数学奥林匹克到举办第31届国际数学奥林匹克,均作出了杰出贡献。

六、关于我国数学竞赛的几个问题 1.要认真总结经验。

既要总结成功的经验,也要总结反面的教训。

特别是1956年至1977年的22年中只小规模地举行了6次数学竞赛,完全停止了16年,比匈牙利因两次世界大战而停止数学竞赛的时间长一倍多,这也从一个侧面反映了左的危害。

要允许甚至鼓励对数学竞赛发表各种不同看法,以避免大轰大嗡、大起大落及一刀切。

当有了缺点时,要冷静分析,划清数学竞赛内含的不合理性与工作中的缺点的界线。

2.完善领导体制。

可否设想,国家教委和中国科协通过中国数学会数学奥林匹克委员会(或其他形式的一元化领导),统一领导与协调全国各级数学竞赛活动和国际数学奥林匹克的参赛和组织培训工作。

成立数学奥林匹克基金会,协助某些数学竞赛活动,奖励数学竞赛优胜者和作出贡献的领导、教练、中小学教师等。

3.向社会作宣传。

宣传数学竞赛的意义和功能,以消除误解,例如数学竞赛是中小学生搞的智力小测验,这是选拔天才,冲击了正常教学,教师,特别是大学教师,搞数学竞赛是不务正业等。

要用事实说明数学竞赛活动的成绩。

例如仅仅文革前的几次低层次数学竞赛中,已有一些竞赛优胜者成才了。

如上海的汪嘉冈、陈志华,北京的唐守文、石赫,他们现在已经是国内的著名中年数学家,有的已获博士导师资格。

他们在文革中都被耽误了10年,否则完全会有更大成就。

4.处理好普及与提高的关系。

数学竞赛需要分学校、市、省、全国、冬令营、集训班金字塔式地进行。

前3个层次是普及型的,试题应不脱离中学数学课本范围,面向广大学生和教师。

国家级竞赛及以后的活动是提高型的,参赛者的面要迅速缩小。

至于冬令营和集训队,全国只能有几十个学生参加。

数学奥林匹克学校要注意质量,宜办得少而精。

对于参加数学学校的学生要严格挑选,不要妨碍他们德、智、体的全面发展。

除冬令营和集训班需要少数数学家集集中时间出试题和进行培训工作外,宜鼓励广大数学家和中小学教师利用业余时间从事数学竞赛活动,不要妨碍大家的正常工作。

总之,数学竞赛的普及部分与提高部分不要对立,而要有机地结合起来。

5.对数学竞赛优胜者要继续进行教育和培养。

一方面要充分肯定优胜者的成绩并加以鼓励,另一方面也要告诉竞赛优胜者,必须戒骄戒躁,谦虚谨慎,要成为一个好数学家或其他方面的专家,还须经过长期不懈的锄。

不要将竞赛获胜看成唯一的目的,要看成鼓励前进的鞭策。

还要为数学竞赛优胜者创造较好的深入学习的机会,使他们能迅速成长。

例如可以考虑允许某些理工科大学在高中全国数学竞赛优胜者中,自行选拔一部分学生免试入学。

6.对数学竞赛活动作出贡献的人员,包括组织领导者、教练与中小学教师的工作成绩要充分肯定并给予奖励。

在他们的工作考核中,作为提职晋级的依据之一.

华罗庚的名言:“聪明在于学习天才在于积累”的意思是什么

“聪明在于学习天才在于积累”的意思:没有真正的天才,了解那些天才的故事就会发现,没有一个人不是努力,勤奋,不断地学习,积累知识而获得成功的

如同“机遇只留给又准备的人”一样,没有一定的只是积累是不可能成为天才的

华罗庚的故事(短的)急

华罗庚从小聪明好学,念初中时,在数学课上就表现出了特殊的才华。

一天王维克老师给全班出了一道数学题,这是一道出自《孙子算经》的题目:“今朝有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何

”王老师在读这道题时,读得很慢,声音抑扬顿挫。

读完题目后,王老师把目光扫向全班同学,一张张紧张思索的面孔,一道道疑惑不解的目光尽在王老师的视野之内。

突然,一个学生站起来,说:“这物品是23个。

”这是个熟悉的声音,这声音把同学们从思索和疑惑中唤醒过来。

大家用惊异的目光看着他。

这个最先说出答案的同学就是少年华罗庚。

华罗庚在解这道题时是这样想的:从“七七数之剩二”开始,就是说,七数余二,那么七的倍数再加二定是这个数,不防设这个数是7×3+2=23。

再对23进行检验:23被3除,余2;23被5除余3,因此,23符合题目条件。

正是由于华罗庚从小勤奋好学,王维克老师加倍看重他的聪明与才华。

华罗庚在学校时给王老师留下了很深的印象。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片