
通项公式是高中数学的重点与难点,以下是专门为你收集整理的通项公式方法总结,供参考阅读!
通项公式方法总结
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
再用(二)的'方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0
又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……
(1)求{an}通项公式 (2)略
解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)
∴{an--}是首项为a1--,公比为--1的等比数列。
由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+-
又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。
证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数)
由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1,
所以数列{an-n}是首项为1,公比为4的等比数列。
若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。
又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略
解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1
不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。求数列通项公式的题型很多,不同的题型有不同的解决方法。下面结合教学实践,谈谈求数列通项公式的解题思路。
一、已知数列的前几项
已知数列的前几项,求通项公式。通过观察找规律,分析出数列的项与项数之间的'关系,从而求出通项公式。这种方法称为观察法,也即是归纳推理。
例1、求数列的通项公式
(1)0,22——1/3,32——1/4,42+1/5……
(2)9,99,999,……
分析:(1)0=12——1/2,每一项的分子是项数的平方减去1,分母是项数加上1,n2——1/n+1=n——1,其实,该数列各项可化简为0,1,2,3,……,易知an=n——1。
(2)各项可拆成10-1,102-1,103-1,……,an=10n——1。
此题型主要通过让学生观察、试验、归纳推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生的思维能力。
二、已知数列的前n项和Sn
已知数列的前n项和Sn,求通项公式an,主要通过an与Sn的关系转化,即an -{ S1(n=1) Sn -Sn——1(n≥2)
例2、已知数列{an }的前n项和Sn=2n+3,求an
分析:Sn=a1+a2 +……+an——1+an
Sn——1=a1+a2 +……+an——1
上两式相减得 Sn -Sn——1=an
解:当n=1时,a1=S1=5
当n≥2时,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1
∵n=1不适合上式
∴an ={5(n=1) 2n——1(n≥2)
三、已知an与Sn关系
已知数列的第n项an与前n项和Sn间的关系:Sn=f(an),求an。一般的思路是先将Sn与an的关系转化为an与an——1的关系,再根据与的关系特征分为如下几种类型。不同的类型,要用不同的方法解决。
(1)an=an——1+k。数列属等差数列,直接代公式可求通项公式。
例3、已知数列{an},满足a1=3,an=an——1+8,求an。
分析:由已知条件可知数列是以3为首项,8为公差的等差数列,直接代公式可求得an=8n-5。
(2)an=kan——1(k为常数)。数列属等比数列,直接代公式可求通项公式。
例4、数列{an}的前n项和Sn,a1=1,an+1=2Sn+1(n∈N+)
求数列{an}的通项公式。
分析:根据an与Sn的关系,将an+1=2Sn+1转化为an与an+1的关系。
解:由an+1=2Sn+1
得an=2Sn-1+1(n≥2)
两式相减,得an+1-an=2an
∴an+1=3an (n≥2)
∵a2=2Sn+1=3
∴a2=3a1
∴{an}是以1为首项,3为公比的等比数列
∴an=3n-1
(3)an+1=an+f(n),用叠加法
思路:令n=1,2,3,……,n-1
得a2=a1+f(1)
a3=a2+f(2)
a4=a3+f(3)
+)an=an——1+f(n-1)
an=a1+f(1)+f(2)+…+f(n-1)
例5、若数列{an}满足a1=2,an+1=an+2n
则{an}的通项公式=( )
解:∵an+1=an+2n
∴a2 =a1+2×1
a3=a2+2×2
a4=a3+2×3
+)an=an——1+2(n-1)
an=a1+2(1+2+3+…+n-1)
=2+2×(1+n-1)(n-1)
=n2-n+2
(4)an+1=f(n)an,用累积法
思路:令n=1,2,3,……,n-1
得a2 =f(1)a1 a3=f(2)a2 a4=f(3)a3
×)an=f(n-1)an-1
an=a1·f(1)·f(2)·f(3)……f(n-1)
例6、若数列{an}满足a1=1,an+1=2n+an,则an=( )
解:∵an+1=2nan ∴a2 =21a1
a3=22a2 a4=23a3
×) an=2n——1·an——1
an=2·22·23·……·2n-1a1=2n(n-1)/2
(5)an=pan——1+q, an=pan——1+f(n)
an+1=an+p·qn(pq≠0),
an=p(an——1)q, an+1=ran/pan+q=(pr≠0,q≠r)
(p、q、r为常数)
这些类型均可用构造法或迭代法。
①an=pan——1+q (p、q为常数)
构造法:将原数列的各项均加上一个常数,构成一个等比数列,然后,求出该等比数列的通项公式,再还原为所求数列的通项公式。
将关系式两边都加上x
得an+x=Pan——1+q+x
=P(an——1 + q+x/p)
令x=q+x/p,得x=q/p-1
∴an+q/p-1=P(an——1+q/p-1)
∴{an+q/p-1}是以a1+q/p-1为首项,P为公比的等比数列。
∴an+q/p-1=(a1+q/p-1)Pn-1
∴an=(a1+q/p-1)Pn-1-q/p-1
迭代法:an=p(an——1+q)=p(pan-2+q)+q
=p2((pan-3+q)+pq+q……
例7、数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+)求an
解析:由Sn=2an-n 得Sn-1=2an-1-(n-1) (n≥2,n∈N+)
两式相减得an=2an-1+1
两边加1得an+1=2(an-1+1) (n≥2,n∈N+)
构造成以2为公比的等比数列{an+1}
②an=Pan-1+f(n)
例8、数列{an}中,a1为常数,且an=-2an-1+3n-1(≥2,n∈N)
证明:an=(-2)n-1a1+3n+(-1)n·3·2n-1/5
分析:这道题是证明题,最简单的方法当然是数学归纳法,现用构造法和迭代法来证明。
方法一:构造公比为-2的等比数列{an+λ·3n}
用比较系数法可求得λ=-1/5
方法二:构造等差型数列{an/(-2)n}。由已知两边同以(-2)n,得an/(-2)n=an-1/(-2)n=1/3·(-3/2)n,用叠加法处理。
方法三:迭代法。
an=-2an-1+3n-1=-2(-2an-2+3n-2)+3n-1
=(-2)2an-2+(-2)·3n-2+3n-1
=(-2)2(-2an-3+3n-3)+(-2)·3n-2+3n-1
=(-2)3an-3+(-2)·3n-3+(-2)·3n-2+3n-1
=(-2)n-1a1+(-2)n-1·3+(-2)n-3·+32+……+(-2)·3n-2+3n-1
=(-2)n-1a1+3n+(-1)n-2·3·2n-1/5
③an+1=λan+p·qn(pq≠0)
(ⅰ)当λ=qn+1时,等式两边同除以,就可构造出一个等差数列{an/qn}。
例9、在数列{an}中,a1=4,an+1+2n+1,求an。
分析:在an+1=2an+2n+1两边同除以2n+1,得an+1/2n+1=an/2n+1
∴{an/2n}是以a1/2=2为首项,1为公差的等差数列。
(ⅱ)当λ≠q时,等式两边同除以qn+1,令bn=an/qn,得bn+1=λ/qbn+p,再构造成等比数列求bn,从而求出an。
例10、已知a1=1,an=3an-1+2n-1,求an
分析:从an=3an-1+2n-1两边都除以2n,
得an/2n=3/2 an-1/2n-1+1/2
令an/2n=bn
则bn=3/2bn-1+1/2
④an=p(an——1)q(p、q为常数)
例11、已知an=1/a an——12,首项a1,求an。
方法一:将已知两边取对数
得lgan=2lgan——1-lga
令bn=lgan
得bn=2bn-1-lga,再构造成等比数列求bn,从而求出an。
方法二:迭代法
an=1/a a2n——1=1/a (1/a a2n——2)2=1/a3 a4n——2
=1/a3 (1/a a2n——3)4=1/a7·an——38=a·(an——3/a)23
=……=a·(a1/a)2n——1
⑤an+1=ran/pan+q(p、q、r为常数,pr≠0,q≠r)
将等式两边取倒数,得1/an+1=q/r·1/an+p/r,再构造成等比数列求an。
例12、在{an}中,a1=1,an+1=an/an+2,求an
解:∵an+1=an/an+2
∴1/an+1=2·1/an+1
两边加上1,得1/an+1+1=2(1/an+1)
∴{1/an+1}是以1/an+1=2为首项,2为公比的等比数列
∴ 1/an+1=2×2n-1=2n
∴an=1/2n-1
以上罗列出求数列通项公式的解题思路虽然很清晰,但是一般考生对第三项中的5种类型题用构选法和迭代法都比较困难的。遇到此情况,可转化为第一种类型解决,即从an与Sn的关系式求出数列的前几项,用观察法求an。
目的:
重点:
1数列的概念。
按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2.数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。
从映射、函数的观点看,数列可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。由于数列的.项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:
根据数列前几项的特点,以现规律后写出数列的通项公式。给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
过程:
一、从实例引入(P110)
1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数 3. 4. -1的正整数次幂:-1,1,-1,1,…5. 无穷多个数排成一列数:1,1,1,1,…
二、提出课题:
1.数列的定义:
按一定次序排列的一列数(数列的有序性)
2. 名称:
项,序号,一般公式 ,表示法
3. 通项公式:
与 之间的函数关系式如 数列1: 数列2: 数列4:
4. 分类:
递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。
5. 实质:
从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6. 用图象表示:
— 是一群孤立的点 例一 (P111 例一 略)
三、关于数列的通项公式
1. 不是每一个数列都能写出其通项公式 (如数列3)
2. 数列的通项公式不唯一 如: 数列4可写成 和
3. 已知通项公式可写出数列的任一项,因此通项公式十分重要例二 (P111 例二)略
四、补充例题:
写出下面数列的一个通项公式,使它的前 项分别是下列各数:1.1,0,1,0. 2. , , , , 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5. , , ,
五、小结:
1.数列的有关概念
2.观察法求数列的通项公式
六、作业:
练习 P112 习题 3.1(P114)1、2
七、练习:
1.观察下面数列的特点,用适当的数填空,关写出每个数列的一个通项公式;(1) , , ,( ), , …(2) ,( ), , , …
2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、
3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式
4.已知数列an的前4项为0, ,0, ,则下列各式 ①an= ②an= ③an= 其中可作为数列{an}通项公式的是A ① B ①② C ②③ D ①②③
5.已知数列1, , , ,3, …, ,…,则 是这个数列的( )A. 第10项 B.第11项 C.第12项 D.第21项
6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。
7.设函数 ( ),数列{an}满足
(1)求数列{an}的通项公式;
(2)判断数列{an}的单调性。
8.在数列{an}中,an=
(1)求证:数列{an}先递增后递减;
(2)求数列{an}的最大项。
答案:
1.(1) ,an= (2) ,an=
2.(1)an= (2)an= (3)an= (4)an=
3.an= 或an= 这里借助了数列1,0,1,0,1,0…的通项公式an= 。
4.D
6. an=4n-2
7.(1)an= (2)<1又an<0, ∴ 是递增数列



