
形容几何的词语
几何学, jī hé xué 基本解释数学的一门分科。
研究物体的形状、大小和位置间相互关系的科学。
古代 埃及 为兴建 尼罗河 水利工程,曾经进行过测地工作,它逐渐发展为几何学。
约公元前三百年,古 希腊 数学家 写成了。
我国 秦 汉 五百年间成书的和中,对图形面积的计算已有记载, 、 、 王孝通 等对几何学都有重大贡献。
十七世纪, 利用代数方法研究几何问题,建立了解析几何。
在十八、十九世纪,由于工程、力学和大地测量等方面的需要,产生了画法几何。
二十世纪以来,,特别是相对论的出现,又促进了的发展。
英文翻译1.geometry2.【机】 geometry几何体, jī hé tǐ 空间的有限部分,由平面和曲面所围成。
如棱柱体、正方体、圆柱体、球体。
也叫立体。
几何概型, jī hé gài xíng 一种概率模型。
它把随机试验归为在某个区域中随机投点,事件的概率往往利用落点区域的度量(长度、面积或体积)来表示。
著名的就是个典型例子:平面上画有距离为a的许多平行线,向平面任意投一枚长为l(l<a)的针,可以证明针与平行线相交的概率为2laπ。
当大量投针试验时,可用来估计π的数值。
几何图形, jī hé tú xíng 点、线、面、体或它们的组合。
简称图形。
几何, jī hé 多少(用于反问)
怎么用一个几何图形来形容自己
狡猾的人,就用圆形;稳重的人,就用三角形(源于小学学的一个定理:三角形具有稳定性);正直的人,用正方形;个人认为:不好惹的人,用六棱体来形容,因为都是尖啊。
。
怎样用几何图形来表示四字成语:一个三角形没个角里有
智力冲浪:仔细看图形,各猜一个四字成语第一个:一个正圆形里有个正方形第二个:一个没有底的三角形,各个角分别都有一个小的圆形外圆内方 释义] 圆:圆通;方:方正。
比喻人表面随和,内心严正。
[出处] 《后汉书·郅恽传》:“案延资性贪邪;外方内圆;朋党构奸;罔上害人。
”李贤注:“言延外示方直而内实柔弱也。
孔子曰:‘色厉而内荏。
’” 分道扬镳[释义] 分路而行。
比喻目标不同,各走各的路或各干各的事。
[出处] 《北史·河间公齐传》:“(元志)为洛阳令;不避强御;与御史中尉李彪争路;俱入见;面陈得失。
……孝文曰:‘洛阳;我之丰沛;自应分路扬镳。
自今以后;可分路而行。
’及出;与彪折尺量道;各取其半。
”
按照图形说出几何语句什么意思?
就是把图形中的关系用数学公式给表示出来,比如:AB=2CD等等。
。
。
。
。
请你选用任意一个几何图形来形容自己的家,并说说你对这个图形的解释 请用简洁的语言向
A、图形的认识1、点,线点,线,面:①图形是由点,线,面构成的。
②面与交得线,线与线相交得③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
③将线段的两端无限延长就形成了直线。
直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1\\\/60是一分,一分的1\\\/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形3、相交线与平行线角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。
②同角或等角的余角\\\/补角相等。
③对顶角相等。
④同位角相等\\\/内错角相等\\\/同旁内角互补,两直线平行,反之亦然。
4、三角形三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
②三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
③三角形三个内角的和等于180度。
④三角形分锐角三角形\\\/直角三角形\\\/钝角三角形。
⑤直角三角形的两个锐角互余。
⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。
⑧三角形的三条角平分线交于一点,三条中线交于一点。
⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。
⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。
两个能够重合的图形叫全等图形。
全等三角形:①全等三角形的对应边\\\/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5、四边形平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边\\\/对角相等。
④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形\\\/定义。
菱形:①一组邻边相等的平行四边形是菱形。
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义\\\/对角线互相垂直的平行四边形\\\/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。
②两条腰相等的梯形叫等腰梯形。
③一条腰和底垂直的梯形叫做直角梯形。
④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:1、图形的轴对称轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段\\\/对应角相等。
2、图形的平移和旋转平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3、图形的相似比:①A\\\/B=C\\\/D,那么AD=BC,反之亦然。
②A\\\/B=C\\\/D,那么A土B\\\/B=C土D\\\/D。
③A\\\/B=C\\\/D=。
。
。
=M\\\/N,那么A+C+…+M\\\/B+D+…N=A\\\/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC\\\/AB=BC\\\/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1\\\/2)。
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。
②相似多边形对应边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。
②条件:AAA、SSS、SAS。
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。
②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
②位似图形上任意一对对应点到位似中心的距离之比等于位似比。
C、图形的坐标平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。
他们分4个象限。
XA,YB记作(A,B)。
D、证明定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。
②对事情进行判断的句子叫做命题(分真命题与假命题)。
③每个命题是由条件和结论两部分组成。
④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:①公认的真命题叫做公理。
②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。
③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。
④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。
按照下面图形说出几何语句______;______
认识立体图形 (1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形. (2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. (3)重点和难点突破: 结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内. 点、线、面、体 1)体与体相交成面,面与面相交成线,线与线相交成点. (2)从运动的观点来看 点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界. (3)从几何的观点来看 点是组成图形的基本元素,线、面、体都是点的集合. (4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体. (5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成. 欧拉公式 (1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F-E=2.这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律. (2)V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数. 几何体的表面积 (1) 几何体的表面积=侧面积+底面积(上、下底的面积和) (2) 常见的几种几何体的表面积的计算公式 ①圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高) ②圆锥体表面积:πr2+nπ(h2+r2)360(r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角) ③长方体表面积:2(ab+ah+bh) (a为长方体的长,b为长方体的宽,h为长方体的高) ④正方体表面积:6a2 (a为正方体棱长 认识平面图形 (1)平面图形: 一个图形的各部分都在同一个平面内,如:线段、角、三角形、正方形、圆等. (2)重点难点突破: 通过以前学过的平面图形:三角形、长方形、正方形、梯形、圆,了解它们的共性是在同一平面内. 几何体的展开图 (1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形. (2)常见几何体的侧面展开图: ①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形. (3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决. 从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键. 展开图折叠成几何提体 通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形 正方体相对两个面上的文字 (1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象. (2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键. (3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面. 截一个几何体 (1) 截面:用一个平面去截一个几何体,截出的面叫做截面. (2) 截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形 第二节 直线 射线 线段 直线 射线 线段 的表示 (1) 直线、射线、线段的表示方法 ①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB. ②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边. ③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA). (2) 点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外 直线的性质 (1)直线公理:经过两点有且只有一条直线. 简称:两点确定一条直线. (2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了. 线段的性质 线段公理 两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短. 简单说成: 两点之间,线段最短. 两点间的距离 (1) 两点间的距离连接两点间的线段的长度叫两点间的距离. (2) 平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离 比较线段的长短 (1)比较两条线段长短的方法有两种:度量比较法、重合比较法. 就结果而言有三种结果:AB>CD、AB=CD、AB<CD. (2)线段的中点:把一条线段分成两条相等的线段的点. (3)线段的和、差、倍、分及计算 做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段. 如图,AC=BC,C为AB中点,AC=12AB,AB=2AC,D 为CB中点,则CD=DB=12CB=14AB,AB=4CD,这就是线段的和、差、倍、分.第三节 角 一:角 (1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边. (2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示. (3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角. (4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″. 钟面角 (1)钟面一周平均分60格,相邻两格刻度之间的时间间隔是1分钟,时针1分钟走112格,分针1分钟走1格.钟面上每一格的度数为360°÷12=30°. (2)计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数. (3)钟面上的路程问题 分针:60分钟转一圈,每分钟转动的角度为:360°÷60=6° 时针:12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°. 方向角 (1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向. (2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.) (3)画方位角 以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线. 二:角的比较与运算 度分秒的换 (1)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″. (2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法. 角平分线的定义 (1)角平分线的定义 从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线. (2)性质:若OC是∠AOB的平分线 则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC. (3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.具体的地址



