
线性代数实验报告
A = 8000 2000B = 0.7000 0.3000 0.6000 0.4000一年后不脱产及职工脱产各有:A * B 6800 3200三年后:A * B^3 6668 333210年间脱产和不脱产职工人数的变化:(依次从第一年到第十年) 6800 3200 6680 3320 6668 3332 6667 3333 6667 3333 6667 3333 6667 3333 6667 3333 6667 3333 6667 3333
总结线性代数的主要内容
你可以参照下面得纲要,线性代数 第一章:行列式 考试内容: 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求: 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 第二章:矩阵 考试内容: 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵等价 分块矩阵及其运算 考试要求: 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算. 第三章:向量 考试内容: 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质 考试要求: 1.理解n维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系 5.了解n维向星空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质. 第四章:线性方程组 考试内容: 线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法. 第五章:矩阵的特征值及特征向量 考试内容: 矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵 考试要求: 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 第六章:二次型 考试内容: 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求: 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理. 2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法 概率与统计 第一章:随机事件和概率 考试内容: 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求: 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算. 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 第二章:随机变量及其分布 考试内容: 随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求: 1.理解随机变量的概念.理解分布函数 的概念及性质.会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用. 3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布 及其应用,其中参数为λ(λ>0)的指数分布的概率密度为 5.会求随机变量函数的分布. 第三章:多维随机变量及其分布 考试内容: 多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布 考试要求: 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布
线性代数matlab实验报告
额,同学和我一样啊
你是
(商品的市场占有率问题) 有两家公司 R 和 S 经营同类的产品, 它们相互竞争. 每年 R 公司保有 1\\\/4 的顾客,而 3\\\/4 转移向 S 公司;每年 S 公司保有 2\\\/3 的顾 客,而 1\\\/3 转移向 R 公司.当产品开始制造时 R 公司占有 3\\\/5 的市场分额,而 S 公司占有 2\\\/5 的市场分额.问两年后,两家公司所占的市场分额变化怎样, 五年以后会怎样? 十年以后如何? 是否有一组初始市场分额分配数据使以后每 年的市场分配成为稳定不变? 问题分析与数学模型 根据两家公司每年顾客转移的数据资料,可得以下转移矩阵: 1 4 A= 3 4 1 3 2 3 根据产品制作之初,市场的初始分配数据可得如下向量: 3 5 X0 = 2 5 所以 n 年后,市场分配为: 1 4 X n = AX n 1 = L = A n X 0 = 3 4 1 3 2 3 n 3 5 2 5 设有数据 a 和 b 为 R 公司和 S 公司的初始市场份额,则 a + b = 1 .为了使以后每年的市 场分配不变,根据顾客数量转移的规律,有: 1 4 3 4 1 3 a a = 2 b b 3 即 3 4 3 4 1 3 a =0 1 b 3 该方程若有解,则应该在非零解的集合中选取正数解作为市场稳定的初始份额. 程序和计算结果 为了得到两年,五年,十年后市场的分配情况. 在 MATLAB 窗口中输入 >> A=[1\\\/4 1\\\/3;3\\\/4 2\\\/3] %输入转移矩阵 A >> x0=[3\\\/5;2\\\/5] %输入初始向量,即初始市场份额 >> x2=A^2*x0 %计算两年后的市场份额 >> x5=A^5*x0 %计算五年后的市场份额 >> x10=A^10*x0 %计算十年后的市场份额 x2 = 0.3097 0.6903 x5 = 0.3077 0.6923 x10 = 0.3077 0.6923 由此可得下表 6.3表 6.3市场份额的转移率: 两年后 五年后 十年后 R 公司的市场份额 31% 31% 31% S 公司的市场份额 69% 69% 69% 为了求 a 和 b 作为 R 公司和 S 公司稳定的初始市场份额,需要求解齐次方程组. 在 MATLAB 窗口中输入: >> format rat %定义输出格式为小整数比的近似值 >> rref(A-eye(2)) %对矩阵 A I 2×2 进行初等变换,所得矩阵为矩阵 % A I 2×2 的最简行阶梯矩阵 ans = 1 0 -4\\\/9 0 4 a b =0. 9 4 ≈ 31% 13 9 b= ≈ 69% 13 a= 由此得简化后的方程为 结合约束条件 a + b = 1 ,可得 这是使市场稳定的两家公司的初始份额,也正好与表中的数据吻合. 问题的解答和进一步思考 在 R 公司和 S 公司的市场初始份额分别为 60%和 40%的情况下,根据计算结果, 两年后情况变化较大:R 公司大约占 31%,S 公司大约占 69%.而五年以后与两年以 后比较变化不大:R 公司大约占 30.8%,S 公司大约占 69%.十年后的的情况与五年 后的情况比较大约不变.市场已趋于稳定.
明白人告诉我 线性代数 的应用究竟有多强大
工科几乎都牵涉高数我已经有所体会了 但是线性代数我只感
线性代数有什么用
线性代数有什么用
这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题。
我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你:1、 如果你想顺利地拿到学位,线性代数的学分对你有帮助;2、 如果你想继续深造,考研,必须学好线代。
因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础。
例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论。
3、 如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲。
他在自己的数学名著《数学概观》中说:要是没有线性代数,任何数学和初等教程都讲不下去。
按照现行的国际标准,线性代数是通过公理化来表述的。
它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论。
…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此。
4、 如果毕业后想找个好工作,也必须学好线代:l 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学)。
恭喜你,你的职业未来将是最光明的。
如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料)。
l 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。
l 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象。
l 想搞经济研究。
好,知道列昂惕夫(Wassily Leontief)吗
哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门。
这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型。
列昂惕夫因此获得了1973年的诺贝尔经济学奖。
l 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划。
许多重要的管理决策是在线性规划模型的基础上做出的。
线性规划的知识就是线代的知识啊。
比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。
l 对于其他工程领域,没有用不上线代的地方。
如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解; 作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗
这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。
知道马尔科夫链吗
这个 “链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了。
l 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究。
嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用。
线性代数在计算机学科上到底有什么应用
线性代数有什么用?这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题.我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你:1、 如果你想顺利地拿到学位,线性代数的学分对你有帮助;2、 如果你想继续深造,考研,必须学好线代.因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础.例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论.3、 如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲.他在自己的数学名著《数学概观》中说:要是没有线性代数,任何数学和初等教程都讲不下去.按照现行的国际标准,线性代数是通过公理化来表述的.它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论.…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此.4、 如果毕业后想找个好工作,也必须学好线代:l 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学).恭喜你,你的职业未来将是最光明的.如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料).l 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算.l 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象.l 想搞经济研究.好,知道列昂惕夫(Wassily Leontief)吗?哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门.这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型.列昂惕夫因此获得了1973年的诺贝尔经济学奖.l 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划.许多重要的管理决策是在线性规划模型的基础上做出的.线性规划的知识就是线代的知识啊.比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润.l 对于其他工程领域,没有用不上线代的地方.如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解; 作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗?这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组.知道马尔科夫链吗?这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了.l 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究. 嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用.因为你如果要真正的讲清楚 线代的一个应用,就必须充分了解所要应用的领域内的知识,最好有实际的工程应用的经验在里面;况且线性代数在各个工程领域中的应用真是太多了,要知道当今成为一个工程通才只是一个传说.总结一下,线性代数的应用领域几乎可以涵盖所有的工程技术领域.如果想知道更详细的应用材料,建议看一下《线性代数及应用》,这是美国David C. Lay 教授写的迄今最现代的流行教材.国内的教材可以看看《线性代数实践及MATLAB入门》,这是西电科大陈怀琛教授写的最实用的新教材.
数学学习的特点
数学学习的:1.高度抽象性 :数学的,在对、程度上都不同于其它学科的抽象,数学助于抽象建立起来 并借助于抽象发展的。
2.严密逻辑性 :数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。
逻辑严密也并非数学所独有。
3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。
拓展资料:许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。
现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
线性代数王天泽课后答案
大学本科的必修课程不同专业稍有不同,一般公共必修课包括:大学政治类:思想道德修养与法律基础、近现代史纲要、思想与社会主义特色理论、马克思主义原理。
大学数学类:高等数学、线性代数、概率统计。
大学物理类:大学物理、大学物理实验。
大学体育类:大学体育。
大学英语类:大学英语。
大学计算机类:计算机基础、编程(一般为C语言)。



