
余弦定理和正弦定理都反映了同一三角形中边、角之间的度量关系,是解斜三角形的重要工具:你能总结解斜三
A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
③将线段的两端无限延长就形成了直线。
直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1\\\/60是一分,一分的1\\\/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形3、相交线与平行线角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。
②同角或等角的余角\\\/补角相等。
③对顶角相等。
④同位角相等\\\/内错角相等\\\/同旁内角互补,两直线平行,反之亦然。
4、三角形三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
②三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
③三角形三个内角的和等于180度。
④三角形分\\\/\\\/钝角三角形。
⑤的两个锐角互余。
⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。
⑧三角形的三条角平分线交于一点,三条中线交于一点。
⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。
⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。
两个能够重合的图形叫全等图形。
:①的对应边\\\/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
:两直角边的平方和等于斜边的平方,反之亦然。
5、四边形平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边\\\/对角相等。
④平行四边形的对角线互相平分。
条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形\\\/定义。
菱形:①一组邻边相等的平行四边形是菱形。
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义\\\/对角线互相垂直的平行四边形\\\/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。
②两条腰相等的梯形叫等腰梯形。
③一条腰和底垂直的梯形叫做直角梯形。
④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平面图形的密铺:三角形,四边形和正六边形可以密铺。
:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做,这个点叫做他的对称中心。
②上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:1、图形的轴对称轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做,这条直线叫做对称轴。
:①角的平分线上的点到这个角的两边的距离相等。
②上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段\\\/对应角相等。
2、图形的平移和旋转平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3、图形的相似比:①A\\\/B=C\\\/D,那么AD=BC,反之亦然。
②A\\\/B=C\\\/D,那么A土B\\\/B=C土D\\\/D。
③A\\\/B=C\\\/D=。
。
。
=M\\\/N,那么A+C+…+M\\\/B+D+…N=A\\\/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC\\\/AB=BC\\\/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的,AC与AB的比叫做黄金比(根号5-1\\\/2)。
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。
②相似多边形对应边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。
②条件:AAA、SSS、SAS。
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。
②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
②位似图形上任意一对对应点到位似中心的距离之比等于位似比。
C、图形的坐标:在平面内,两条互相垂直且有公共原点的数轴组成。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。
他们分4个象限。
XA,YB记作(A,B)。
D、证明定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。
②对事情进行判断的句子叫做命题(分真命题与假命题)。
③每个命题是由条件和结论两部分组成。
④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:①公认的真命题叫做公理。
②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。
③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。
④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。
杜郎口教学模式,来写一下小学数学角的度量的导学案。
(急求)
课题:角的度量班级 姓名 评价 主备人 审核人 使用人 使用日期 教学思路纠错栏使用说明及学法指导:1、自学课本第37、38页,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。
2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
3、带有★的题目可不做学习目标:1在观察、交流的基础上,认识量角器的结构与功能,通过自己的探索、实践,总结出用量角器量角的方法,初步学会用量角器量角。
2、在学习过程中体会统一角的计量单位的需要,认识角的计量单位,建立1°角的表象;能通过量角,建立角的大小的量化观念,感受角的大小与所画边的长短无关。
3、通过动手操作、自主探究、合作交流培养学生自学能力、观察能力、实践能力及合作精神。
学习重点: 体会引入角的度量单位的必要性。
学习难点:会用量角器量角的度数一、自主学习1、认识量角器1.认识角的计量单位。
思考:量角器是什么形状的?(是个半圆),从0开始到180为止。
这个半圆被平均分成了多少份?说明:把半圆平均分成180份,每一份所对的角就叫做1度的角。
也就是说,计量角的单位是“度”。
写“度”可以用一个小圆圈“ °”来表示,此为“1度”,2.认识量角器的结构。
(1)把半圆分成180等份,每一份是1°,。
(2)请同学们观察,量角器上小圆点叫做量角器的中心。
再仔细观察,量角器上有几圈刻度?外圈的刻度0°-180°是按怎样排列的?内圈呢? (3)外圈的刻度线,从左边o°刻度线起? 组内找出10°、30°、90°、120°、180°,从左边起找出外圈50°的刻度线,找出90°的刻度线?找出外圈125°的刻度线?(4)从右边起,内圈的刻度怎样找呢?表示出内圈0°的刻度线?45°80°?90°组内学生找出140°、180°的刻度线。
(5)请同学们拿出自己的量角器。
量角器上的中心在哪里?从左边起,找0°、135°、180°刻度线。
再从右边起,找10°135°180° 刻度线。
2、组内探究量角的方法3、p38页1 角的大小变化有什么规律
(角的大小与边的长短没有关系,只与两条边张开的大小有关。
两边张开得越大,角就越大,张开得越小,角就越小。
)二、合作探究、归纳展示量角的方法:(小组合作完成,一组展示,其余补充、评价)友情提示:量角的时候量角器的中心和角的顶点重合,量角器的一条0刻度线和角的一条边重合,看角的另外一条边对着刻度几,这个角就是几度。
量角的方法归纳为“两重合,一看数”三、过关检测:1、 p38页做一做2、p39页练习四3-7题3、认真阅读课本3738页、页内容,完成下面填空①、角的计量单位是( ),用符号( )表示。
②、把一个圆平均分成( )份,每一份所对的角就是( )记作( )。
③、量角的步骤是:(1)两角器的中心与( )重合,0度刻度线与( )重合。
(2)另一条边在量角器上所对的刻度是多少,这个叫就是多少度。
⑤、量一量76页各角的度数,你发现了什么
⑥、量角时,什么时候读外圈的刻度
什么时候读内圈刻度
⑦、看看书上的图示,能总结出画指定度数的角的步骤吗
(1)( )(2)( )(3)( )★4、p39页第8题总结、评价:今天的学习,我学会了: 。
我在 方面的表现很好,在 方面表现不够,以后要注意的是: 。
总体表现(优、良、差),愉悦指数(高兴、一般、痛苦)
勾股定理中的三角形的三个角分别是多少度
初一数学知识点第一章有理数1正数、负数、有理数、相反数、科学记数法、近似数2数轴:用数轴来表示数3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小。
5有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;互为相反数的两数相加为零;一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)减去一个数,等于加上这个数的相反数。
7有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
8有理数的除法(转换为乘法)除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方正数的任何次幂都是正数;零的任何次幂都是负数;负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。
第二章整式的加减补角和余角:等角的补角和余角相等4一元一次不等式组及其解法:大大取大;小小取小;大于大的,小于小的取两边,大于小的,小于大的去中间。
请帮我把人教版1-6年级的数学公式总结起来,谢谢
一到六年级所有数学公式总归纳 1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、 加数+加数=和 和-一个加数=另一个加数 7、 被减数-减数=差 被减数-差=减数 差+减数=被减数 8、 因数×因数=积 积÷一个因数=另一个因数 9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 10、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 11 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 12、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 13、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 14、 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 15、平行四边形 s面积 a底 h高 面积=底×高 s=ah 16、梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 3相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 4长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1\\\\3\\\\5\\\\7\\\\8\\\\10\\\\12月 小月(30天)的有:4\\\\6\\\\9\\\\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 5、 角 直线;直线是无限的。
线段:直线上两点间的一段叫做线段。
线段有两个端点。
线段是直线的一部分。
射线:把线段的一端无限延长,就得到一条射线。
射线只有一个端点。
角:从一点引出两条射线所组成的图形叫做角。
这个点叫做角的顶点。
这两条射线叫做角的边。
角通常用符号“∠”来表示。
如下图: 边 顶点 边 比较角的大小:先把两个角的顶点和一条边重合,然后看另一条边的位置。
哪个角的另一条边在外面,哪个角就大。
如果另一条边也重合,说明两个角相等。
角的大小要看两条边的大小叉开的越大,角越大。
角的大小与角的两边画出的长短没有关系。
角的度量:角的计量单位是“度”,用符号“°”表示。
把半圆分成180等份,每一份所对的角叫做1度的角。
记作1°,用量角器量角的时候,把量角器放在角的上面,使量角器的中心和角的顶点重合。
0°该度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数。
角的分类:大于0°,而小于90°的角叫做锐角。
等于90°的角叫做直角。
大于90°而小于180°的角叫做钝角。
角的两边成一条直线,等于180°的角叫做平角。
一条射线绕它的端点旋转一周所成为一个360°的角叫做周角。
垂线:两条线相交成直角时,这两条线叫做互相垂直,其中一条直线叫做另一条直线的垂线(如下图1),这两条直线的交点,叫做垂足。
平行:在同一个平面内永不相交的两条直线叫做平行线(如下图2)。
也可以说这两条直线互相平行。



