
谁知道欧拉的关于一笔画的定理
过七桥·欧拉·一笔画*宋 森18世纪,俄国的哥尼斯堡有一条小河叫勒格尔河,河有两条主流,一条叫新河,一条叫旧河,它们在市中心汇合,在合流的地方中间有一座小岛,在小岛和两条支流上建有七座桥。
哥尼斯堡的居民有个传统习惯,星期天沿着城市的河岸和小岛散步,同时试图找一条路线,可经过所有七桥但又不重复经过任意一座桥.当时大多数人都把这种过桥游戏当作一种娱乐。
是否存在一条既通过七桥又不重复的路线呢
这就成了著名的“七桥问题.当时,正在哥尼斯堡的瑞士著名数学家欧拉对“七桥问题”产生了兴趣。
数学家考虑问题往往是化繁为简,欧拉首先把被河流隔开的小岛和三块陆地看成四个点,把每座桥看成一条线.这样一来,七桥问题就抽象为由四个点和七条线组成的几何图形,这样的几何图形在数学上叫网络.于是,“一个人能否无重复地一次走遍七座桥最后回到起点”就变成“从四个点中某一个点出发,能否一笔把这个网络画出来”.这就是所谓的一笔画。
欧拉进一步研究发现,网络能否一笔画出来的关键在于这些点.这些点有两类,如果从一点引出的线是奇数条,就把这个点叫奇点;如果从一点引出的线是偶数条,就把这个点叫偶点,网络中奇点的数是零或二,这个网络就能一笔画出来。
由于七桥问题中的四个点都是奇点,按欧拉的规律,这个网络是一笔画不出来的.也就是说想一次无重复地走过所有七座桥是不可能的,因为根本就不存在这样一条路线。
欧拉将七桥问题转化为一个网络问题,从而完成了从实际到数学模型的转化,开创了数学上的新分支——拓扑学. 这段真实的故事告诉我们:许多重要的抖学理论都来源于生活,这些理论反过来又可以帮助我们去完成实践。
如果你能有意识地注意观察周围的事,并能转换思维模式,善于思考和总结规律,你就会有许多新的发现,或许你就会成为当代的欧拉。
(马洪岩摘自《思维与智慧》)
欧拉的故事你有什么收获50字
在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。
小欧拉没有与教会、与上帝“保持一致”,他敢于提出质疑,敢于打破思想的禁锢。
关于欧拉和高斯的事迹.
1、华罗庚 华罗庚(1910.11.12-1985.6.12), 出生于江苏省常州市金坛区,祖籍江苏省丹阳市。
世界著名数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。
中国第一至第六届全国人大常委会委员。
他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,也是中国在世界上最有影响力的数学家之一,被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。
国际上以华氏命名的数学科研成果有华氏定理、华氏不等式、华-王方法等。
华罗庚先生早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。
他在多复变函数论、矩阵几何学方面的卓越贡献,更是影响到了世界数学的发展。
也有国际上有名的“典型群中国学派”,华罗庚先生在多复变函数论,典型群方面的研究领先西方数学界10多年,这些研究成果被著名的华裔数学家丘成桐高度称赞。
华罗庚先生是难以比拟的天才、是个人才。
2、高斯 约翰·卡尔·弗里德里希·高斯(C.F.Gauss,1777年4月30日-1855年2月23日),男,德国著名数学家、物理学家、天文学家、大地测量学家。
高斯被认为是历史上最重要的数学家之一,并有“数学王子”的美誉。
生于布伦瑞克,1792年进入Collegium学习,在那里他独立发现了二项式定理的一般形式、数论上的“二次互反律”、素数定理、及算术-几何平均数。
1795年高斯进入哥廷根大学,1796年得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。
1855年2月23日去世。
高斯在历史上影响巨大,可以和阿基米德、牛顿、欧拉并列。
1792年,15岁德高斯进入Braunschweig学院。
在那里,高斯开始对高等数学作研究。
独立发现了二项式定理的一般形式、数论上的“二次互反律”、质数分布定理、及算术几何平均 。
1795年高斯进入哥廷根大学。
1796年,17岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》,并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
1807年高斯成为哥廷根大学的教授和当地天文台的台长。
高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。
并用这种方法,发现了谷神星的运行轨迹。
谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。
皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。
高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。
奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。
从此高斯名扬天下。
高斯将这种方法著述在著作《天体运动论》。
1855年2月23日清晨,在哥廷根去世。
3、祖冲之 祖冲之(429年-500年),字文远,范阳遒(今河北省涞水县)人,刘宋时代数学家、天文学家。
祖冲之,在世界数学史上第一次将圆周率(π)值计算到小数点后七位,即3.1415926到3.1415927之间。
他提出约率22\\\/7和密率355\\\/113,这一密率值是世界上最早提出的,这项成果领先世界近一千年,所以有人主张叫它“祖率”,也就是圆周率的祖先。
他将自己的数学研究成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本。
他还经过多年测算,编制了一部新的历法——《大明历》。
这是当时世界上最先进的历法。
《大明历》第一次将“岁差”引进历法。
提出在391年中设置144个闰月。
推算出一回归年的长度为365.24281481日,误差只有50秒左右。
数学家欧拉的故事
事情是因为星星而引起的。
当时,小欧拉在一个教会学校里读书。
有一次,他向老师提问,天上有多少颗星星。
老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。
其实,天上的星星数不清,是无限的。
我们的肉眼可见的星星也有几千颗。
这个老师不懂装懂,回答欧拉说:天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。
欧拉感到很奇怪:天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢
上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢
上帝会不会太粗心了呢
他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。
老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。
小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。
在老师的心目中,这可是个严重的问题。
在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。
小欧拉没有与教会、与上帝保持一致,老师就让他离开学校回家



