
数学建模论文?
听数学建模课的感想 今年,我选修了数学建模这门课,因为我感觉数学建模是非常有用的一门课,而且我对数学建模也非常感兴趣。
在学习的过程中,我获得了很多知识,对我有非常大的提高。
同时我有了一些感想和体会。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用简单的数学工具)(4)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
(7)模型应用:应用方式因问题的性质和建模的目的而异。
我还了解到学习数学建模的意义是:1、培养创新意识和创造能力2、训练快速获取信息和资料的能力3、锻炼快速了解和掌握新知识的技能4、培养团队合作意识和团队合作精神5、增强写作技能和排版技术6、荣获国家级奖励有利于保送研究生7、荣获国际级奖励有利于申请出国留学在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。
特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧
通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。
是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。
我相信,我会进步更多的
我永远不会忘了我的数学建模课
这是我写的,你看能不能用参考数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
(5) 模型分析:对所得的结果进行数学上的分析。
(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
(7) 模型应用:应用方式因问题的性质和建模的目的而异。
我还了解到学习数学建模的意义是:1、培养创新意识和创造能力2、训练快速获取信息和资料的能力3、锻炼快速了解和掌握新知识的技能4、培养团队合作意识和团队合作精神5、增强写作技能和排版技术6、荣获国家级奖励有利于保送研究生7、荣获国际级奖励有利于申请出国留学在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。
特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧
通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。
是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。
我相信,我会进步更多的
我永远不会忘了我的数学建模课
数学建模论文
1、一栋楼房的后面是一个很大的花园,在花园中紧靠着楼房有一个温室,温室伸入花园宽2米,高3米,温室正上方是楼房的窗台,清洁工打扫窗台周围,他得用梯子越过温室,一头放在花园中,一头靠在楼房的墙上,因为温室是不能承受梯子的压力的,所以梯子太短是不行的。
现清洁工只有一架7米长的梯子,你认为它能不能达到要求
如不能,那达到要求的梯子的最小长度是多少
2、现有一个木工,一个电工和一个油漆工,三人互相同意彼此装修他们自己的房子。
在装修之前,他们达成了如下协议:(1)每人总共工作10天(包括给自己家干活);(2)每人的日工资根据一般的市价在60—80元之间;(3)每人的日工资数应使得每人的总收入与总支出相等。
下表是他们协商后制定出的工作天数的分配方案,如何计算出他们每人应得的工资
由上面两个题目以其中的一个写一篇关于数学建模的论文回答:问题提出(就是题目,这里给你个题,不好可以换)现有一个木工、一个电工和一个油漆工,三人相互同意彼此装修他们自己的房子。
在装修之前,他们达成了如下协议: (1) 每人总共工作10天(包括给自己家干活在内); (2) 每人的日工资根据一般的市价在60~80元之间;(3) 每人的日工资数应使得每人的总收入与总支出相等。
表5-3是他们协商后制定出的工作天数的分配方案,如何计算出他们每人应得的工资
(4)n个人互相装修,给出他们的应得工资模型并编写计算机上可实现的程序 木工 电工 油漆工 在木工家工作的天数 2 1 6 在电工家工作的天数 4 5 1 在油漆工家工作的天数 4 4 3 然后是符号说明(就是说你运用的符号的具体含义是什么,解释一下)然后是模型建立(就是从问题里你得到哪些关系式,要分开写)最后就是模型求解(就是把问题的答案写一下)文字格式什么的你们老师应该不要求的吧。
差不多就这样了,希望我的回答你喜欢数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。
)关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。
问题重述 2。
问题分析3。
模型假设与约定4。
符号说明及名词定义5。
模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。
进一步讨论(参数的变化、假设改变对模型的影响)7。
模型检验 (使用数据计算结果,进行分析与检验)8。
模型优缺点(改进方向,推广新思想)9。
参考文献及参考书籍和网站10。
附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。
)小经验:1。
随时记下自己的假设。
有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。
2。
随时记录自己的想法,而且不留余地的完全的表达自己的思想。
3。
要有自己的特色,闪光点。
如何撰写数学建模论文当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。
撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。
事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。
首先要明确撰写论文的目的。
数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。
当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。
其次,要注意论文的条理性。
下面就论文的各部分应当注意的地方具体地来做一些分析。
(一) 问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。
列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。
历届数学建模竞赛的试题可以看作是情景说明的范例。
对情景的说明,不可能也不必要提供问题的每个细节。
由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。
所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。
这部分内容就应该在论文的“问题的假设”部分中体现。
由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。
(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。
(3)假设应验证其合理性。
假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。
对于后者应指出参考文献的相关内容。
(二) 模型的建立在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。
论文中用到的各种数学符号,必须在第一次出现时加以说明。
总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。
(三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。
在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。
还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。
基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。
有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。
这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。
在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。
结论使用时要注意的问题,可以用助记的形式列出。
定理和命题必须写清结论成立的条件。
(四) 模型的讨论对所作的数学模型,可以作多方面的讨论。
例如可以就不同的情景,探索模型将如何变化。
或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。
还可以用不同的数值方法进行计算,并比较所得的结果。
有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。
通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。
除正文外,论文和竞赛答卷都要求写出摘要。
我们不要忽视摘要的写作。
因为它会给读者和评卷人第一印象。
摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。
语言是构成论文的基本元素。
数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。
不要把一句句子写得太长,使人不甚卒读。
语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。
在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。
最后,论文的书写和附图也都很重要。
附图中的图形应有明确的说明,字迹力求端正。
参加数学建模竞赛的十大秘诀1 诚信是最重要的数学建模竞赛是考查学生研究能力和实践能力的一场综合性比赛,有很多方面的知识和能力可以考查,但其中我觉得最重要的是诚信。
我感到中国在这方面的教育还远远不够,我知道有很多同学写论文并不是实事求是地去做,而是编造数据、修改结论,明明自己没法编程实现却硬说自己做出来了,还编了一些数据。
这些行为也许能够骗过评委,也许可以因“此”而获奖,但是这对他们将来是很不利的,希望能够引起足够的注意。
2 团队合作是能否获奖的关键在三天的比赛中,团队交流所占用的时间可能会超过一半。
在一个小组中,出现意见不一是非常正常的,如果一个队意见完全一致,我想他们肯定不会拿奖。
出现分歧的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,这似乎是个贬义词,但我的意思是说不要总认为自己的观点是正确的,多听听别人的观点,在两者之间谋求共同点。
如果三个人都是自傲类型的人,也许每个人都非常强,但一旦合作,分歧就无法解决,做出来的就是一团糟,也就是说“三个诸葛亮顶不上一个臭皮匠”。
我奉劝这样的话最好别组成一队了。
合作在竞赛前就应当培养,比如一块儿做模拟题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法,然后几天后大家一块交流,这些都是可以磨合团队之间的关系的。
通常在比赛时,三个人的分工是明确的,一个是领军人物,主要是构建整个问题的框架并提出有创意的idea,自然其他部分比如论文写比如程序设计比如计算他也能参加,应该算是一名全能型的人物;第二个是算手,顾名思义,主司计算方面的问题,比如编程计算一个微积分或者手工计算一条最优路径等。
优秀的团队算手一般会精通(是精通不是入门)一个软件的应用,比如C比如MATLAB比如LINGO;最后一个是写手,主要工作在于论文的写作和润色上。
好的论文要让人一眼就明了其中的意思,所以写手的工作还是需要一定的技巧的。
当然,最重要的还是三个队员之间的讨论和交流,同心协力,在整个比赛过程中形成一种良好的交流氛围。
3 时间和体力的问题竞赛中时间分配也很重要,分配不好可能完不成论文,所以开始时要大致做一下安排。
不必分的太细,比如第一天做第一小题,第二天做第二小题,这样反而会有压力,一切顺其自然。
开始阶段不忙写作,可以将一些小组讨论的要点记录下来,不要太工整,随便写一下,到第三天再开始写论文也不迟的。
也不要到第三天晚上才开始。
另外要说的就是体力要跟上,三天一般睡眠只有不到10 个小时,所以没有体力是不行的,建议是赛前熬夜编程几次,既训练了自己的建模能力,也达到了训练体力的目的,赛前锻炼身体我觉得没什么用处,多熬夜就行了,但比赛前一天可不许熬。
4 重视摘要摘要是论文的门面,摘要写的不好评委后面就不会去看了,自然只能给个成功参赛奖。
摘要首先不要写废话,也不要照抄题目的一些话,直奔主题,要写明自己怎样分析问题,用什么方法解决问题,最重要的是结论是什么要说清楚,在中国的竞赛中结论如果正确一般得奖是必然的,如果不正确的话评委可能会继续往下看,也可能会扔在一边,但不写结论的话就一定不会得奖了,这一点不比美国竞赛,所以要认真写。
摘要至少需要琢磨两个小时,不要轻视了它的重要性。
很有必要多看看优秀论文的摘要是如何写的,并要作为赛前准备的内容之一。
5 论文写作要正规论文一定要大致按照摘要、问题重述、模型假设、符号说明、问题分析、(建立、分析、求解模型)、模型检验、参考文献、附录等等的方式来写。
一篇论文结构上如果失败的话,比赛也一定不会成功,一般初评会先淘汰一些结构失败的文章,如果论文没有好的结构,内容再好也没有用。
论文前面的结构一般都不会变,后面可以按照实际情况来安排,省略的部分可以有结果说明、灵敏度分析、其他模型、模型扩展、优缺点分析等等,多看些优秀论文就知道还有哪些形式了。
附录可以贴一些算法流程图或比较大的结果或图表等等。
6 分析问题要认真一般竞赛题目自己肯定没有见过,而且我发现近些年来的赛题都不是书上哪个模型可以直接套成功的,很多根本就没有固定的模型可以参考,所以分析问题不是一个去找书本的过程,依赖书本就意味着自己的思想被束缚起来。
可以完全按照自己的分析去完成,平时练习的时候学习的是一种方法,通过以前学到的方法来解决,不是套用书本来解决,没有模型套怎么办,只有靠自己去实际分析。
我估计在前面说的五点也许会有三分之一的队可以做到,而且可以做的很好,但是这一点上就需要真本事了,平时多努力,比赛发挥正常,这一点做好是没有问题的。
7 编程求解是重要手段美国竞赛时,美国学生中的论文很多是编程数据的说明,比如99 年A 题行星撞地球那题,他们也能够模拟出撞击后果,这对我们来说简直是不可思议的。
美国学生实践能力较强,而中国学生擅长理论分析,所以我把编程放在了分析的后面是有中国特色的。
数学建模竞赛特别强调计算机编程解决实际问题的能力,最近几年尤其强调,编程方面的能力不是一朝一夕可以练成的,需要长期刻苦的训练,常用的工具有MATLAB、Mathematica、C\\\/C++ 等等,一个人只需要会一门语言就行了,但需要精通它。
比如要画柱状图该怎么做,要用Floyd 算法怎么办,赛前不准备是没有办法在比赛中很好运用的,因此每个常用的算法都自己去编程实现一下。
8 模型的假设与模型的建立评委看完摘要后紧接着就是看模型假设了,有一个万能的方法就是可以抄题目中可以作为假设的几句话,这样会给人留下好的印象,毕竟说明你审题了。
但不能全抄,要加上自己的一些假设。
一般假设用文字描述就行了,最好不要太具体了,一些重要参数不要被定死只能取某些值,否则会让人感觉论文的局限性较强。
模型的建立是根据你对问题分析而来的,提出的数学符号和建立模型最好要比较接近,在同一页最好,以便评委可以对照符号来看,数学公式要严谨,推导要严密,这些都反映了参赛者的数学素质和能力,即使你推导不对,别人看到你的阵势也首先会误以为你是对的。
那么多的试卷,评委不可能顺着你的公式一直推下去,但你要写得显得有数学修养才行。
9 图文表并貌可以增色我听说一个不确切的信息是评委老师喜欢用MATLAB 编程的论文,不知道有没有这回事,但这说明了老师需要看一个具有图或表在其中的论文,一篇如果像政治书那样写的论文估计没有人会对它感兴趣的,尤其是科技论文。
MATLAB 编程之所以受到青睐是因为MATLAB 提供的图形处理能力很强大。
图表的说明性特别强,如果结论有很多数据的话,最好做成图表的形式加以说明,会令你的论文更有说服力,也更容易受到评委的好评。
10 其他其他内容还是有很多的,说也说不完,挑几个重要的讲。
比如不要上网讨论,网上的人水平参差不齐,你不知道谁是对的,而且很多人想得奖,不会告诉你正确的,反而骗你说相反的,有时真理往往掌握在少数人手里。
还有就是论文写作中灵敏度分析不要写太多,大致说明一下就可以了,不要喧宾夺主。
最后想到的就是要使用数学公式编辑器来写论文,不要用什么上下标来表示,论文字体用小四,分标题用四号黑体等等。
求关于数学建模的1500字以上的优秀论文
论文范文--利用数学建模解数学应用题 数学建着人类的进步,科技的发展和社日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。
强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。
数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。
本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。
数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。
这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。
如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。
是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。
往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。
必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。
因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。
可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。
对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。
要进行分析、加工和作出假设,然后才能建立数学模型。
如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。
如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。
数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。
建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。
结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。
有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。
所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。
同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。
因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。



