
《古今数学思想》的读后感1000字
阅读M·克莱因的《古今数学思想》一书后,使我了解了数学的乐趣所在。
《古今数学思想》论述了从古代一直到20世纪头几十年,这数千年中数学大部分分支的历史发展,内容有美索不达米亚的数学、埃及的数学、古典希腊数学的产生等,阐述了一些重要的数学思想的来源、数学之间与数学和其他自然科学,尤其是力学、物理学的关系。
恐怕没有人比M.克莱因更熟悉数学的来龙去脉了,作者把西方数学史写得脉络清晰,也非常吸引人。
读了古今数学思想1后,颇有感触:看来读任何学科的东西都要读它的发展史啊 。
我们往往太过于吹捧数学的理性精神了。
但实际上这门学科的发展从来都是和经验密不可分,否则负数、无理数、无穷大、无穷小也不会几千年都不被人接受。
有天文才有三角和球面几何,有绘画才有射影几何。
第11章文艺复兴的最后一节,“经验主义的兴起”,观点很精彩。
正是有了经验的材料,数学才得以大跨步向前发展。
当然,这也是符合我的观点的。
我一向都认为,根本不存在什么脱离经验的纯理性。
但也不可否定理性对经验的指导作用。
没有微积分就没有现代数学,众所周知,从希腊世界到中世纪,一直崇尚几何蔑视代数的情形下,是很难产生变化的思想的,必须要有从几何到代数的适当转移。
经过阿拉伯世界的熏陶,西方人终于开始解放思想。
13章,“十六纪的代数”,牛顿、莱布尼兹、费马等开始登场,代数终于从几何中脱离出来了。
最后一章射影几何,在经验材料的基础上,在人们对现实应用的需求上,数学(几何学)终于开始走下神坛,新分支新理论终于开始出现。
从此,数学的视野不断放宽。
其实大学的射影几何也不过是Desargues一人的成果。
原来帕斯卡最重要的贡献是射影几何方面。
最后一节太精彩了。
连续变化的思想就此开始。
微积分的思想基础渐渐渗透、增压,待到第二册中引发爆炸。
就整个第一册来讲,有这么样一种感觉:作者太迷恋希腊世界了,然后对罗马世界嗤之以鼻。
这也许应该是作者的一种偏见吧。
读古今数学思想1后使我感悟到:学习数学,重要的是理解,而不是像别的科目一样死背下来.数学有一个特点,那就是“闻一知十”.做会了一道题,就可以总结这道题所包含的方法和原理,再用总结的原理去解决这类题,学习数学还有一点很重要,那就是从已知、基本的入手,稳妥当当的去练,不好高骛远,不求全部题都做。
在做题的过程中,最忌讳的就是粗心大意.明明一道题会做,却因大意做错了,是很不值得的.所以在考数学的时候,肯定不要太急,要条理清楚的去计算,思索;这样速率可能会稍慢,但却可以使你不丢分.相比之下,我会接纳稍慢的计算方法,多思、多想,尽量做到不漏、不错.我想学习是终身的事情,不要过于着急,一步一个脚迹的来,肯定会取得意想不到的效果.上述就是我读古今数学思想1后的 观后感。
古今数学思想1 观后感
阅读M·克莱因的《古今数学思想》一书后,使我了解了数学的乐趣所在。
《古今数学思想》论述了从古代一直到20世纪头几十年,这数千年中数学大部分分支的历史发展,内容有美索不达米亚的数学、埃及的数学、古典希腊数学的产生等,阐述了一些重要的数学思想的来源、数学之间与数学和其他自然科学,尤其是力学、物理学的关系。
恐怕没有人比M.克莱因更熟悉数学的来龙去脉了,作者把西方数学史写得脉络清晰,也非常吸引人。
读了古今数学思想1后,颇有感触:看来读任何学科的东西都要读它的发展史啊 。
我们往往太过于吹捧数学的理性精神了。
但实际上这门学科的发展从来都是和经验密不可分,否则负数、无理数、无穷大、无穷小也不会几千年都不被人接受。
有天文才有三角和球面几何,有绘画才有射影几何。
第11章文艺复兴的最后一节,“经验主义的兴起”,观点很精彩。
正是有了经验的材料,数学才得以大跨步向前发展。
当然,这也是符合我的观点的。
我一向都认为,根本不存在什么脱离经验的纯理性。
但也不可否定理性对经验的指导作用。
没有微积分就没有现代数学,众所周知,从希腊世界到中世纪,一直崇尚几何蔑视代数的情形下,是很难产生变化的思想的,必须要有从几何到代数的适当转移。
经过阿拉伯世界的熏陶,西方人终于开始解放思想。
13章,“十六七世纪的代数”,牛顿、莱布尼兹、费马等开始登场,代数终于从几何中脱离出来了。
最后一章射影几何,在经验材料的基础上,在人们对现实应用的需求上,数学(几何学)终于开始走下神坛,新分支新理论终于开始出现。
从此,数学的视野不断放宽。
其实大学的射影几何也不过是Desargues一人的成果。
原来帕斯卡最重要的贡献是射影几何方面。
最后一节太精彩了。
连续变化的思想就此开始。
微积分的思想基础渐渐渗透、增压,待到第二册中引发爆炸。
就整个第一册来讲,有这么样一种感觉:作者太迷恋希腊世界了,然后对罗马世界嗤之以鼻。
这也许应该是作者的一种偏见吧。
读古今数学思想1后使我感悟到: 学习数学,重要的是理解,而不是像别的科目一样死背下来. 数学有一个特点,那就是“闻一知十”.做会了一道题,就可以总结这道题所包含的方法和原理,再用总结的原理去解决这类题, 学习数学还有一点很重要,那就是从已知、基本的入手,稳妥当当的去练,不好高骛远,不求全部题都做。
在做题的过程中,最忌讳的就是粗心大意.明明一道题会做,却因大意做错了,是很不值得的. 所以在考数学的时候,肯定不要太急,要条理清楚的去计算,思索;这样速率可能会稍慢,但却可以使你不丢分.相比之下,我会接纳稍慢的计算方法,多思、多想,尽量做到不漏、不错. 我想学习是终身的事情,不要过于着急,一步一个脚迹的来,肯定会取得意想不到的效果. 上述就是我读古今数学思想1后的 观后感。
参考:
数学史概论读后感800字
这些天,阅读了校长给数学教师推荐的《人民教育》中蔡宏基的《捕捉数学史中的教育基因》一文。
刚开始,看到以“字母表示数”为例,正好是我们年级选择上实验课的内容,所以粗略浏览了导入和体验部分,觉得我们如果要上这节课,也会如此设计,于是就没有看下去。
想着读了还要交体会,于是拿起来重新看了一遍,读到文章的反思和运用部分让我耳目一新、心为之一震。
在多年注重课堂形式多样之后,这节课却以纯数学的设计,体现了数学本身的魅力。
在这节课蕴含了丰富的数学学科知识和深厚的学科素养,还有就是从数学发展史较好的捕捉了教育基因,是数学学习变得丰富有趣。
我想,这样的一节课一定能让学生感受到数学本身的乐趣,并爱上数学这门学科。
读完这篇文章,我思绪澎湃,作为数学教师的我,对数学有了一种全新的感受,原来数学是如此之美,数学课也能上得如此精彩
想想之前的我,每当家长询问为什么孩子不喜欢学数学时,我一直都很理直气壮的回答,是因为数学是一门很抽象,枯燥的学科。
学完此文,我深感惭愧,产生了这样的疑问:是数学真的就是枯燥乏味,还是教数学的我们没有了解数学的乐趣呢
我也在思考着,为什么在我的数学课中没能将数学之美传递给学生,让学生被数学的魅力吸引而萌发浓厚的兴趣呢
要做到这些,我缺少了什么
带着这些疑问和思考,结合对自己教学的反思,我觉得作为数学教师的我,在教学中,也能从设计中较好的体现数学基础知识,突破教学重、难点,也能考虑学生的特点,设计有趣的练习帮助学生学习数学。
例如:在学习对称图形时,我能让学生在设计图案时感受图形变换之美。
可是,根本没能深入从数学的角度去思考、挖掘出数学本质的美并以此去引导学生,由此去探究数学魅力,激起学习的兴趣。
现如今的小学数学教师,很少有接受过高等数学的教育的,大部分教师还是中师毕业,然后去进修到大专的,有些进修的也不是数学专业,我也是如此。
所以以我们的知识和能力,要上出一节如此精彩的数学课,我想我还有很多不足,具体如下:首先是本人对数学本质美的认识和对数学发展史的了解欠缺。
学生之所以不喜欢这门学科,可能是因为他们不了解这门学科,没有认识到这门学科的美妙之处,如果我们教师能在课堂上时不时的向孩子们讲一些数学的历史,一些数学家的故事,也许真能找到一条培养学生的数学兴趣的捷径。
这不禁让我想起在校本思维训练课程中的尝试,正是那一个个的数学故事,让学生感受到了数学的趣味,才使得孩子们都积极的参与到学习当中。
我何不将之带到数学课堂当中呢
要做好这些,必须先提高自己在这方面的储备。
通过上网收集资料,我将在08阅读年中,于本学期认真阅读M·克莱因的《古今数学思想》一书,了解数学的乐趣所在,下学期将阅读有关数学发展史的书籍,提高对数学学科发展的了解。
第二是对中学数学的教学内容不了解,从而在教学设计中很少思考中小学数学的衔接问题,没有从的大教学发展观去设计教学。
以前就听到过中学数学教师埋怨小学数学教师的话,当时很是愤愤不平。
可读了这篇文章后,感到确实如此。
要实现小学到中学的顺利过渡,我将在今后的阅读计划中加入学习初中,甚至高中数学课本的内容,提高数学学科知识的储备。
第三是满足现状,不思进取。
之前的我,还很满足于目前的状况,所教班级在年级排名不错,公认的年级差班成绩也在不断提高,达到了中等。
在每学期的实验课中获得了几次“十节好课”,感觉真不错。
可读完文章,我感觉自己要这样下去,就会跟不上时代脉搏。
感谢校长推荐了这样一篇好文章,不止是找到自己的不足,更明确了个人发展的方向。
最后,引用屈原的“路漫漫兮,其修远兮,吾将上下而求索”结束。
哈哈,数学原来超有趣 的 读后感啊 拜托了
一看即懂,一学就会,酷玩酷学,增长智慧。
好看、好玩、逗笑的数学书
从前的人怎样算数呢
你能想象到没有“0”的世界会是什么样子吗
数学生活中“位置”代表的意义相同吗
你知道运算符号“+”和“-”的由来吗
你知道“千载一遇”的概率换成数字是多少吗
你知道植物花瓣数目的秘密吗
…… 嘻嘻,这一切听起来很神奇吧
哈哈,告诉你,这就是超有趣的数学
《数学原来超有趣》这本书把我们带入有趣的数学世界。
以前我最怕的就是数学,认为它枯燥无味,现在我再也不会这样了。
同学们不妨也试着去读读这本有趣又有益的书。
古今数学家的故事
读《古今数学思想》有感谈到语文,我们会立刻想到很多名传千古的美文和朗朗上口的古诗,分析文字我们会发现这个字的产生在古代有着怎样深远的意义;聊到文学思想,我们可以追溯到孔孟之道、儒家思想„„但是一提到“数学”二字,好像我们的脑海里仿佛只能浮现出一些数字、字母、算式、方程、抛物线等等,我们会的只是计算、解决与数学相关的问题,至于这些东西是怎么产生的,为什么会这样我们却不得而知。
非常有幸的是我在寒假里阅读了由美国著名数学家、数学史家、教育家、哲学家和应用物理学家莫里斯·克莱因撰写的《古今数学思想》,他的这部博大精深的不朽著作,向人们展示了数学从巴比伦和埃及起源时至20世纪最初几个年代的主要创造,围绕着数学思想的主要概念以及为其作出贡献的人物组织起来的这本巨著,给人们提供了数学发展的的一个概观,揭示了隐藏在今天这个学科互不相连的各个分支后面的统一性。
读完这本书,我感觉阅读这本书的过程就是我们数学教育者的一次寻根之旅。
虽然在本书提到“为了不使资料漫无边际,我忽略了几种文化,例如中国的、日本的和玛雅的文化,因为他们的工作对于数学思想的主流没有重大的影响”也让我略感失望。
下面我将谈谈我阅读完本书后的一点感受:⑴数学史即人类的发展史,数学的进程在很大程度上取决于历史的进程。
人类是高级动物,在逐步进化中由于生活的种种需要逐渐产生了数学,如角的边常是用股或臂的自来代表的。
在英文中,直角三角形的两边叫两臂。
在原始文明中,数学的应用只限于简单交易,而到公元前600年的300年间,较早的泥版对数学史具有重要意义,这时已经有了初步的文字出现,巴比伦人更是以60为基底实行进位记法,还用进位记法表示分数,还有了表示平方、平方根、立方和立方根的数表。
而这时的数学知识已经被运用到了挖运河、修堤坝以及搞其他水利工程。
在公元前的最末三个世纪里,数学的应用多了起来,特别是用于计算日球和行星的运动。
随着人类文明的进步到古典时期数学产生了几大学派,几大学派通过交流学习都产生了自己的独特见解,爱奥尼亚学派的泰勒斯运用数学知识预报了一次日蚀,还曾用一根一直长度的杆子,通过同时测量杆影和金字塔影之长,求出了金字塔的高度。
毕达哥拉斯派研究出了三角形数和三元数组„„到了压力三大时期,欧几里得的《原理》一书成为一本具有重要意义的数学史书,随着第三帝国的产生,数学在亚力三大学术界占据了主导地位。
而这一时期出现的伟大数学家阿基米德会用穷竭法求面积和体积,计算π。
不仅如此,他还发明了一种从河上提水的水泵,用杠杆挪动重物,利用抛物镜面的聚焦性质,还把集中的阳光照到攻城的罗马穿上把它们焚毁。
随着历史的演变,数学的发展也产生了几番衰替。
但到了16世纪,由于日益发展的银行业务和商务活动要求一个更好的算术,远涉重洋的地理探险需要人们又更准确的天文知识,要求编制出更好的天文数表,而这需要有更准确的三角函数表。
最后,工匠的技术工作,特别是建筑、制造大炮和抛射体运动方面的工作,要求有定量的思维。
在这些需要的压力下,代数的进展也加速了。
到了18世纪末年“解析几何”已经成为标准的名词,与此同时,微积分和无穷级数也进入了数学。
⑵数理不分家。
通过阅读这本书,几位数学家给我留下来深刻感受。
如我只知道柏拉图式理想主义的鼻祖,却不知柏拉图对数学的演绎结构做出过重大贡献;我们只知道物理学中的阿基米德定理,却不知他更是古代最伟大的数学家,他的数学工作包括用穷竭法求面积和体积,除此之外,他还是一个优秀的天文学者;我们只知道牛顿提出了万有引力定律,却不知他还是一个大化学家,在数学方面关于微积分,他也总结了很多具有发展性的思想,并在1736年出版了数学有关的著作《流数法和无穷级数》。
这些大家告诉我们学科间既有独立的领域,更有密不可分的关系。
⑶数学来源于生活。
合上书我不禁感慨,数学其实就是生活的产物,结绳记事是为了计数,60为基底计数法也是为了计数,随着人类文明的进步,充满智慧的人们在满足生活需要的同时也使数学的发展更加快速。
到21世纪,随着科学的进步,电脑的普及,大数据时代的到来,我想数学也会与科学同步,随之发生巨变。
数学史是一部写不完的长卷,因为人类的文明没有停止



