
生物基因工程综述报告.(4个实例约600字+归纳主要内容200字+自己观点)
基因工程genetic engineering 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础, 以分子生物学和微生物学的现代方法为手段, 将不同来源的基因(DNA分子),按预先设计的蓝图, 在体外构建杂种DNA分子, 然后导入活细胞, 以改变生物原有的遗传特性、获得新品种、 生产新产品。
基因工程技术为基因的结构和功能的研究提供了有力的手段。
什么是基因工程
【简介】 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。
所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。
它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。
基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。
一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中安家落户,进行正常复制和表达,从而获得新物种的一种崭新的育种技术。
这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。
第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品拷贝出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。
科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。
无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。
迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。
事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。
基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。
目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。
诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。
毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。
目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。
比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。
随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。
如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。
这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。
这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。
【基因工程的基本操作步骤】 基因工程步骤 1.获取目的基因是实施基因工程的第一步。
2.基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。
3.将目的基因导入受体细胞是实施基因工程的第三步。
4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。
这是基因工程的第四步工作。
基因工程的前景科学界预言,21世纪是一个基因工程世纪。
基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。
生物工程的基础是现代生命科学、技术科学和信息科学。
生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。
生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。
其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。
随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。
美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗
这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。
这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。
人类基因工程走过的主要历程怎样呢
1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。
酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。
人类基因组研究是一项生命科学的基础性研究。
有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。
人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。
将成为医学和生物制药产业知识和技术创新的源泉。
美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。
科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。
依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。
基因药物将成为21世纪医药中的耀眼明星。
基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。
比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。
明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。
医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。
人类基因工程的开展使破译人类全部DNA指日可待。
基因工程将破译DNA 信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。
目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。
有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。
到2050年,人类的平均寿命将达到90至95岁。
人类将挑战生命科学的极限。
1953年2月的一天,英国科学家弗朗西斯·克里克宣布:我们已经发现了生命的秘密。
他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。
有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。
破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。
1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。
1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。
可以预见,在今后的四分之一世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。
继2000年6月26日科学家公布人类基因组工作框架图之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。
这次公布的人类基因组图谱是在原工作框架图的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。
人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。
人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。
随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。
克隆羊多利 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。
一是转基因动植物,一是克隆技术。
转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。
如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。
1997年世界十大科技突破之首是克隆羊的诞生。
这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。
“克隆”一时间成为人们注目的焦点。
尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。
基因工程大事记 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。
1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。
1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。
1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。
1969年 科学家成功分离出第一个基因。
1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。
1983年 科学家首次培育出世界第一个转基因植物转基因烟草。
1988年 K.Mullis发明了PCR技术。
1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。
1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。
1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。
1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。
中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。
1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。
2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。
2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。
2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。
2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。
2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。
2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。
科学家首次公布人类基因组草图“基因信息”。
求高中所有生物科学家,他们的实验、实验方法总结。
如:萨顿 假设基因在染色体上 类比推论法。
19世纪30年代, 德国植物学家施莱登(M.J.Sehleiden,18o4— 1881)和动物学家施旺(T.Schwann,1810— 1882)提出了细胞学说,指出细胞是一切动植物结构的基本单位。
1859年,英国生物学家达尔文(C.R.Darwin,1809—1882)出版了《物种起源》一书,科学地阐述了以自然选择学说为核心的生物进化理论。
1900年,孟德尔(G.Mendel,1822- 1884)发现的遗传定律被重新提出,生物学迈进第2个阶段—— 实验生物学阶段。
1944年,美国生物学家艾弗里(O.Avery,1877-1955)用细菌做实验材料,第1次证明了DNA是遗传物质。
1953年,美国科学家沃森(J.D.Watson,1928——)和英国科学家克里克(F.Crick,1916-2004)共同提出了DNA分子双螺旋结构模型。
这是20世纪生物科学最伟大的成就,标志着生物科学的发展进入了一个新的阶段——分子生物学阶段。
第3章第1节1773年,意大利科学家斯帕兰札尼(L.Spallanzani,1729- 1799),通过实验证明,胃液有化学性消化作用。
1836年,德国科学家施旺(T.Schwann,1810—1882),从胃液中提取出胃蛋白酶。
(第2次出现)1926年,美国科学家萨姆纳(J.B.Sumner,1887—1955),从刀豆种子中提取出脲酶的结晶,并且通过化学实验证实脲酶是一种蛋白质。
20世纪80年代, 美国科学家切赫(T.R.Cech,1947一)和奥特曼(S.Ahman,1939一)发现少数RNA也有生物催化作用。
第3节1771年, 英国科学家普里斯特利(J.Priestley,1733— 18o4),通过实验发现植物可以更新空气。
1864年,德国科学家萨克斯(J.yon Sachs,1832—1897),通过实验证明光合作用产生了淀粉。
1880年, 美国科学家恩格尔曼(G.Engelmann,1809- 184 ),通过实验证明叶绿体是植物进行光合作用的场所。
20世纪,30年代,美国科学家鲁宾(S.Ruben)和卡门(M.Kamen)用同位素标记法证明光合作用中释放的氧全部来自水。
第4章第1节1880年,达尔文(C.R.Darwin,1809—1882)通过实验推想,胚芽鞘的尖端可能会产生某种物质,这种物质在单侧光的照射下,对胚芽鞘下面的部分会产生某种影响。
(第2次出现)1928年,荷兰科学家温特(F.W.Went,1903——),通过实验证明,胚芽鞘的尖端确实产生了某种物质,这种物质从尖端运输到下部,并且促使胚芽鞘下面的某些部分生长。
1934年,荷兰科学家郭葛(F.Ko )等人从植物中提取出吲哚乙酸—— 生长素。
第6章第1节1)DNA是主要的遗传物质1928年,英国科学家格里菲思(F.Grifith,1877—1941),通过实验推想,已杀死的S型细菌中,含有某种“转化因子”,使R型细菌转化为S型细菌。
1944年, 美国科学家艾弗里(O.Avery,1877—1955)和他的同事,通过实验证明上述“转化因子”为DNA,也就是说DNA才是遗传物质。
1952年,赫尔希(A.Hershey)和蔡斯(M.Chase),通过噬菌体侵染细菌的实验证明,在噬菌体中,亲代和子代之间具有连续性的物质是DNA,而不是蛋白质。
2)DNA分子的结构和复制1953年,美国科学家沃森(J.D.Watson,1928一)和英国科学家克里克(F.Crick,1916-2004)共同提出了DNA分子双螺旋结构模型。
1962年,沃森、克里克和维尔金斯共同获得了诺贝尔生理学或医学奖。
(第2次出现)第2节基因的分离定律 孟德尔(G.Mendel,1822-1884),奥国人,通过豌豆等植物的杂交试验,于1865年,在当地的自然科学研究学会上宣读了《植物杂交试验》论文,提出了遗传的分离定律和自由组合定律。
(第2次出现)第3节18世纪英国著名的化学家和物理学家道尔顿(J.Dalton,1766— 184 ),第1个发现了色盲症,也是第1个被发现的色盲症患者。
第7章l9世纪(1859年),达尔文,在其《物种起源》一书中.提出以自然选择学说为核心的生物进化理论。
(第3次出现)选修绪论1973年,美国科学家科恩(S.N.Cohen,l935一),第1次实现了不同物种间的DNA重组。
第1章第2节1796年,英国医师爱德华•詹纳(Edward Jenner,l749一l823),发明了接种牛痘预防天花。
第3章第1节(课外读)我国水稻育种专家袁隆平。
被称为“杂交水稻之父”。
第4章第2节1)植物细胞工程 2O世纪5O年代,我国植物生理学家崔徵等人,发现细胞分裂素含量和生长素含量的比例可调控植物组织培养过程中芽和根的形成。
2)动物细胞工程 1976年,阿根廷科学家米尔斯坦(Cesar Milstein,l926一)和德国科学家柯勒(GeorgesKohler,l946一),通过细胞融合制备出单克隆抗体。
由于他们的杰出工作,在1984年,获得了诺贝尔生理学或医学奖。
第5章1675年,荷兰学者列文虎克(A.van I~euwenhoek,l632— 1723),用自制的显微镜观察了雨水、井水、河水中的微生物。
第1节1892年,俄国科学家伊凡诺夫斯基(D.Ivanowsky,l864一l920),发现引起烟草花叶病的致病因子可以通过细菌滤器。
不久,荷兰生物学家贝哲林克(Martinus Be~efinck,185l一1931)发现,这种滤过性因子具有生物的许多特征,并推测它能进入细胞内进行繁殖。
第2节l9世纪后期,德国细菌学家科赫(Robert Koch,l843— 1910)发明了固体培养基,分离出炭疽芽孢杆菌、霍乱弧菌、结核杆菌等。
1905年,科赫因结核杆菌的研究成果获得诺贝尔生理学或医学奖。
第3节1857年, 法国微生物学家巴斯德(L.Pastuer,l822— 1895),发现了发酵原理,并发明“巴氏消毒法”。
如今这种方法仍广泛用于食品工业的消毒。
从上述清单中,不难看出,曾不止一次出现在课本中的科学家有:德国动物学家施旺,第1次在绪论中,第2次在第3章第1节,酶的发现中。
英国博物学家达尔文,第1次在绪论中,第2次在第4章第1节,生长素的发现中,第3次在第7章,现代生物进化理论中。
美国科学家艾弗里,第1次在绪论中,第2次在第6章第1节1),DNA是主要的遗传物质中。
DNA分子双螺旋结构发现者,美国科学家沃森和英国科学家克里克,第1次出现在绪论中,第2次出现在第6章,第1节2),DNA分子的结构和复制中。
遗传学奠基人孟德尔,第1次出现在绪论中,第2次,在第6章第2节1),基因的分离定律中。
上述科学家中,曾获诺贝尔生理学或医学奖的有(按获奖时间先后顺序):1905年,德国细菌学家科赫,因结核杆菌的研究成果。
1962年,沃森、克里克和维尔金斯因DNA双螺旋结构模型的发现共同获得。
1984年,阿根廷科学家米尔斯坦和德国科学家柯勒,因通过细胞融合制备出单克隆抗体而获奖。
生物高手进,基因工程实验设计,高分悬赏
获取目的基因,构建基因表达载体即重组DNA分子,转化受体细胞,筛选重组细胞,实现目的基因表达这五个步骤。
工具为限制性核酸内切酶,载体,DNA连接酶。
设备貌似不是高中生物所要了解的。
所以我也不知道了,,希望我的回答会对你有用,,谢谢。
常见的基因工程实验有什么操作注意事项有哪些
常基因工程实验有什么操作注意有哪些确保实作人员身体的,尽量防止实验操作人员在正常和异常环境条件下接触危害物质,做到以人为本的实验室安全基本原则;确保实验操作场所及其周边环境的安全,尽量防止危害物质在实验操作场所内部以及向周围环境的有意和无意释放;确保实验仪器设备正常运作的安全,制定完善的仪器使用和保养管理方案,确保在实验过程中和实验结束后相关仪器处于正常状态;确保实验操作对象的安全,在有关的基因工程实验中,实验操作对象包括微生物、植物和动物,要确保它们不逃逸、不遗失,以及操作前后的运输和保存的安全.
关于基因工程试验中设计引物的问题。
指致病基因是否会因为基因工程实验操作而只至于致病基因,不会因为基因工程实验差不多扩大。
基因工程的应用
基因工程应用举例1.与医药卫生 (1)生产基因工程药品 ①优点:高质量、低成本 ②举例:胰岛素、干扰素、乙肝疫苗等60多种 (2)基因诊断 ①含义:用放射性同位素、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本上的遗传信息,达到检测疾病的目的。
②举例:用DNA探针检测出肝炎患者的病毒,为诊断提供了一种快速简便方法。
③成果:已能够检测出肠道病毒、单纯疱疹病毒等多种病毒;在诊断遗传病方面发展尤为迅速;在肿瘤诊断中的应用取得重要成果。
(3)基因治疗 ①含义:把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的。
②举例:半乳糖血症(病因、研究成果) ③发展前景:许多遗传病及疑难病症将被人类征服。
2.与农牧业、食品工业 (1)农业:培育高产、优质或具特殊用途的动植物新品种。
(2)畜牧养殖业:培育体型巨大(如超级小鼠、超级绵羊、超级鱼等)、品质优良(如具有抗病能力、高产仔率、高产奶率和高质量的皮毛等)的转基因动物;利用外源基因在哺物体内的表达获得人类所需要的各种物质,如激素、抗体及酶类等。
(3)食品工业:为人类开辟新的食物来源。
3.与环境保护 (1)用于环境监测:用DNA探针可检测饮水中病毒的含量 ①方法:使用一个特定的DNA片段制成探针,与被检测的病毒DNA杂交,从而把病毒检测出来。
②特点:快速、灵敏 (2)用于被污染环境的净化:分解石油的“超级细菌”;“吞噬”汞和降解土壤中DDT的细菌;能够净化镉污染的植物;构建新的杀虫剂;回收、利用工业废物等至于最新的研究很难找,这里是一些国家的最新研究进展: 英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。
如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。
德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。
此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。
1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。
法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。
另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。
西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。
其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。
ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。
印度:印度政府资助全国50多家研究中心来收集人类基因组数据。
由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。
但印度的私营生物技术企业还处于起步阶段。
日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。
一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。
新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。
该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。
中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。
这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。
希望对你有帮助。
为什么选大肠杆菌进行基因工程的实验
为什么选大肠杆菌进行基因工程的实验比较了不同方法制备的大肠杆菌感受态细胞的转化效率,并优化了质粒DNA转化感受态细胞体系。
结果表明:高效法制备的感受态细胞转化效率极显著高于普通法制备感受态细胞的转化效率,其效率提高了966.1%,而高效法感受态细胞转化效率与商品化的感受态细胞转化效率差异不显著。
-80℃超低温长期保存时,相比较于15%甘油,以7%DMSO为冻存保护剂保存的感受态细胞其转化效率达到1.1×107,较15%甘油冻存保护剂保存的转化效率提高了69%。
温浴5 min,冰浴10 min时,其转化效率最高,达到4.95×107。
应用高效法制备的感受态细胞转化不同大小质粒的效率极显著高于普通大肠杆菌感受态细胞,其转化效率较普通大肠杆菌感受态细胞的提高了550%,而转化时间缩短至普通大肠杆菌感受态细胞的12.5%,仅为15min。



