
传热实训报告总结怎么写
写的主要就是通过这次实训你学到了什么,怎样运用你已学会的知识,再写写通过这次实训你对化工方面的了解和对就业形式的看法就好了,我们老师就这样说的,我们也写了,老实说还不错,,,
化工原理实验心得体会
化工原理实验心得体会 生命科学学院12生物工程20121878王志云这个学期我们学习了《化工原理》这门课,在学习了部分理论知识后,我们进入了实验室,开始学习《化工原理实验》并分组进行了实验。
和前几个学期类似,大家先要进行实验的预习,在了解和熟悉实验的要求和操作的基础上,然后在老师提问检查每一组各位组员对实验过程的预习程度后,对各位组员的预习情况进行点评,并指出其中的不足和缺漏。
然后在指导老师的悉心讲解后,对实验有一个新的、更全面的认识后进行实验。
通过动手实验,我更加深刻的理解了化工原理课上老师讲解的知识,增强了动手能力,对理论知识有了形象化的认识。
本学期我们共学习了五个实验,分别是:实验一、离心泵的特性曲线实验,实验二、流体流动阻力的测定,实验三、空气—蒸汽对流传热系数的测定实验四、恒压过滤常数的测定实验五、填料塔的精馏实验通过对实验的学习并亲手操作,我掌握了许多知识。
这几个实验中我印象最深刻的是恒压过滤常数的测定,实验以生活中常见的碳酸钙的水浆液位测定原料。
这个实验和空气—蒸汽对流传热系数的测定实验一起分组进行。
老师讲解完实验原理并强调了注意事项后,我们开始实验。
我们小组先进行了恒压过滤常数测定实验,首先我们对两个小组的成员进行了各项职责的分配分别是:两位同学负责碳酸钙水浆液的搅拌和回收,由一位同学负责数据的采集和记录的工作。
每个三分钟记录床层温
导热系数测定的实验有什么体会与收获
导热系数测定验体会获通过测定良导体(铜、空气)、导体(橡胶)的导热系验,我们组的各同学都明白了要用1、测良导体、不良导体的导热系数的方法是稳态法2、导热系数的物理意义是什么
3、测λ要满足什么条件,怎样保证这些条件
4、测量冷却速率时,为什么要在稳态温度θ2附近取值
一、测良导体、不良导体的导热系数的方法是稳态法 测量导热系数我们组用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。
而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。
本实验应用稳态法测量良导体(铜、空气)、不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。
二、导热系数的物理意义: 导热系数是表征物质热传导性质的物理量。
导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦\\\/(米·度),w\\\/(m·k)(W\\\/m·K,此处的K可用℃代替。
导热系数与材料的组成结构、密度、含水率、温度等因素有关。
材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。
三、测λ要满足什么条件,怎样保证这些条件
(1)测θ1、θ2系统要处于稳定态,即这两个温度在10分钟内保持不变,并且θ1大于θ2。
θ1人为控制在3.47——3.53mv(2)测量散热板在θ2附近的冷却速率。
四、测冷却速率时,为什么要在稳态温度θ2附近选值
(1)当散热板处在不同温度时,它的散热速率不同,与本体温度、环境温度有关。
(2)在实验中,当系统处于稳态时,通过待测样品的传热与散热盘向侧面和下面的散热率相同,所以测冷却速率要在稳态温度θ2附近。
总之,通过这次实验,我们收获很大。
不仅掌握了与导热系数有关的许多热学知识,而且由于热学实验升温、降温不好控制,培养了我们严谨的科学态度、细致的观察能力、团结合作的意识。
最后衷心感谢老师的耐心指导
换热器课程设计心得体会
这次化工课程设计,我设计的换热器的饱和水蒸气流速有些小,壳程阻力有点大,如果用于工业生产还需加以改造与强化。
在换热器的设计过程中,我感觉我的理论运用于实际的能力得到了提升,主要有以下几点: (1)掌握了查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; (2)树立了既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; (3)培养了迅速准确的进行工程计算的能力; (4)学会了用简洁的文字,清晰的图表来表达自己设计思想的能力。
从设计结果可看出,若要保持总传热系数,温度越大、换热管数越多,折流板数越多、壳径越大,这主要是因为水的出口温度增高,总的传热温差下降,所以换热面积要增大,才能保证Q和K.因此,换热器尺寸增大,金属材料消耗量相应增大.通过这个设计,我们可以知道,为提高传热效率,降低经济投入,设计参数的选择十分重要.
大学物理实验报告误差分析主要怎么写
主要内容是造成误差的原因有哪些,可以从实验的以下几个方面入手1、数据采集,包括实验的数据,比如测量结果是否精确,测量过程中是否有误差2、实验步骤,操作是否规范,3、室内环境,有没有影响实验结果的外界因素4、室内温度,温度对此实验会不会产生影响5、实验本身的条件,器材是否完好,器材损坏会不会对实验结果造成影响,影响大不大
“有机实验报告:熔点的测定”
熔点的测定一实验目的1,了解熔点测定的基本原理及应用。
2,掌握熔点的测定方法。
二实验原理固液两相蒸汽压一致,固液两相平衡共存,这时的温度摄氏度m即为该物质的熔点。
初熔至全熔范围称为熔程。
温度不超过0.5-1摄氏度。
当含有非挥发性杂质时,液体的蒸汽压降低,熔点降低,熔程变长。
三,熔点测定方法(1)粗测:快速加热5℃\\\/min,测定大概熔点温度(适用未知物的熔点测定)(2)精测:缓慢加热5℃\\\/min,距熔点10时,减慢加热速度为1—2s。
当毛细管仲样品开始塌落和有温润现象时,出现下滴液体时,表明样品已经开始融化,为初熔,记下温度,继续加热,至透明胶体,记下温度为全熔四,实验内容1,测定尿素的熔点。
(mp132.7摄氏度)2,测定肉桂酸的熔点(mp133摄氏度)主要装置:
谁有大一的大学化学实验报告
正好有一份大学的实验报告供你参考一下化学实验报告题 目: 恒的装配和性能测试 学 院: 专 业: 班 : 姓 名: 学 号: 指导老师: 一、研究背景(前言)温度是一个极其特别的物理量。
在热力学中时常出现,在日常生活中也无处不在。
在物理化学实验中所测得的数据,如黏度、密度、蒸气压、表面张力、折射率、电导、化学反应速率常数等都与温度有关。
所以,许多物理化学实验必须在恒温条件下进行。
通常用恒温槽来控制温度维持温度。
恒温槽所以能维持恒温主要依靠恒温控制器来控制恒温槽的热平衡。
恒温槽的原理:本实验讨论的恒温水浴就是一种常用的控温装置,它通过继电器、温度调节器(水银接点温度计)和加热器配合工作而达到恒温的目的。
其简单恒温原理线路如图2-1-1所示。
当水槽温度低于设定值时,线路I是通路,因此加热器工作,使水槽温度上升;当水槽温度升高到设定值时,温度调节器接通,此时线路II为通路,因电磁作用将弹簧片D吸下,线路I断开,加热器停止加热;当水槽温度低于设定值时,温度调节器断开,线路II断路,此时电磁铁失去磁性,弹簧片回到原来的位置,使线路I又成为通路。
如此反复进行,从而使恒温槽维持在所需恒定的温度。
各种恒温槽广泛使用于精细化工、生物工程、医药食品、冶金、石油、农业等领域。
为用户提供高精度的恒温场源,是研究院、高等院校、工矿企业实验室、质检部门理想的恒温设备。
因此,对恒温槽的装配和性能测试非常重要。
二、实验目的1.了解恒温槽的结构及恒温原理,初步掌握其装配和调试的基本技术。
2.绘制恒温槽灵敏度曲线(温度-时间曲线),学会分析恒温槽的性能。
3.掌握贝克曼温度计和接触温度计的调节及使用方法。
4.了解温度的PID控制技术。
三、实验原理恒温槽一般由浴槽、加热器、搅拌器、温度计、感温元件、恒温控制器等部分组成。
恒温槽装置示意图:1.浴槽2.加热器3.搅拌器4.温度计5.电接点温度计6.继电器7.贝克曼温度计1.浴槽:通常有金属槽和玻璃槽两种。
其容量和形状视需要而定。
2.加热器:通常的是电热器。
根据恒温槽的容量、恒温温度以及与环境的温差大小来选择电热器的功率。
3.搅拌器:一般用电动搅拌器,搅拌速度可调,使槽内各处温度尽可能保持相同。
4.温度计:常用1\\\/10℃温度计作为观察温度用。
为了测定恒温槽的灵敏度,可用1\\\/100℃温度计或贝克曼温度计。
所用温度计在使用前需进行标化。
5.感温元件:它是恒温槽的感觉中枢,是提高恒温槽精度的关键所在。
感温元件的种类很多,如接触温度计、热敏电阻感温元件等。
6.电子继电器:用来控制恒温槽加热器“通”“断”电的装置。
恒温槽灵敏度的测定是在指定温度下,观察温度的波动情况,控温效果可以用灵敏度△t表示(t1为恒温过程水浴的最高温度,t2为恒温过程水浴的最低温度):常以温度—时间曲线表示:四、实验部分1.主要药品和仪器设备主要药品:松香、锡、蒸馏水等。
仪器设备:玻璃缸、接触温度计、贝克曼温度计、温度计( 1\\\/10℃ )、停表、搅拌器、电子继电器、加热器。
2.实验步骤(1)恒温槽的装配在玻璃缸中加入蒸馏水至容积2\\\/3处,按图将各部件装好,接好线路。
(2)调节贝克曼温度计将贝克曼温度计调节好,使其水银面在25℃时位于2.5℃左右刻度。
(3)恒温槽的调试打开控温装置,调节温度至25℃,打开搅拌器,置于合适的速度,打开加热器,置于合适的功率,等待恒温。
(4)30℃时恒温槽灵敏度的测定待恒温槽在30℃下恒温后,每0.5min从贝克曼温度计上读一次温度,测定30min。
(5)35℃时恒温槽灵敏度的测定改变恒温槽温度,使其在30℃恒温,用同样的方法测定恒温槽30℃时的灵敏度。
实验结束,先关控温装置、搅拌器,再拔下电源插头。
五、数据记录及处理时间\\\/min30℃时温度差30℃时温度35℃时温度差35℃时温度0.50.12530.1250.27635.2761.0 0.10930.1090.10135.1011.50.09530.0950.29635.2962.0 0.08230.0820.27135.2712.50.06930.0690.26635.2663.0 0.05530.0550.26635.2663.50.04430.0440.26935.2694.0 0.030 30.030.25535.2554.50.01630.0160.28935.2895.0 0.00430.0040.270 35.275.5-0.01229.9880.24635.2466.0 -0.02429.9760.25635.2566.5-0.03829.9620.24535.2457.0 -0.05229.9480.27635.2767.5-0.06629.9340.270 35.278.0 -0.080 29.920.24735.2478.5-0.09429.9060.24535.2459.0 -0.10729.8930.250 35.259.5-0.12129.8790.24335.24310.0 -0.13229.8680.27735.27710.5-0.14529.8550.260 35.2611.0 -0.15629.8440.23235.23211.5-0.16829.8320.10135.10112.0 -0.17829.8220.24635.24612.5-0.18929.8110.24135.24113.0 -0.200 29.80.25135.25113.5-0.21129.7890.24735.24714.0 -0.22229.7780.24535.24514.5-0.23129.7690.25535.25515.0 -0.24329.7570.23735.23715.5-0.25229.7480.24135.24116.0 -0.26229.7380.24335.24316.5-0.27129.7290.25235.25217.0 -0.28129.7190.30335.30317.5-0.26129.7390.25135.25118.0 -0.24729.7530.25135.25118.5-0.25629.7440.24135.24119.0 -0.26629.7340.25335.25319.5-0.27629.7240.240 35.2420.0 -0.28629.7140.25935.25920.5-0.23329.7670.24135.24121.0 -0.23129.7690.23735.23721.5-0.24229.7580.262 35.26222.0 -0.25129.7490.24535.24522.5-0.260 29.740.30335.30323.0 -0.26929.7310.24235.24223.5-0.27929.7210.24335.24324.0 -0.28529.7150.25535.25524.5-0.24829.7520.24535.24525.0 -0.25529.7450.27635.27625.5-0.26529.7350.25535.25526.0 -0.27429.7260.260 35.2626.5-0.28329.7170.24535.24527.0 -0.24829.7520.25135.25127.5-0.25229.7480.25635.25628.0 -0.26229.7380.24335.24328.5-0.27129.7290.27135.27129.0 -0.280 29.720.24935.24929.5-0.260 29.740.26335.26330.0 -0.24829.7520.24235.2421.以时间为横坐标,温度为纵坐标,绘制30℃的温度-时间曲线恒温槽的灵敏度:△t=(t1-t2)\\\/2=(29.769 -29.714)\\\/2=0.0275对恒温槽性能进行评价:大部分时刻的温度都处于30℃以下,根据4个较典型的灵敏度曲线图,可得属于加热器功率太小或散热太快。
2.以时间为横坐标,温度为纵坐标,绘制35℃的温度-时间曲线恒温槽的灵敏度:△t=(t1-t2)\\\/2=(35.296-35.101)\\\/2=0.0975对恒温槽性能进行评价:大部分时刻的温度都处于35℃以上,根据4个较典型的灵敏度曲线图,可得属于加热器功率太大或散热较慢。
六、注意事项1.感温元件灵敏度要高。
2.搅拌器搅拌速度要足够大,才能保证恒温槽内温度均匀。
3. 加热器导热良好且功率适当。
4.搅拌器、感温元件和加热器相互接近,使被加热的液体能立即搅拌均匀并流经感温元件及时进行温度控制。
5.贝克曼温度计属于较贵重的玻璃仪器,水银球的玻璃壁较薄,水银球的尺寸较大,容易损坏,所以使用时应十分小心,不要随便放置,不用时应放入温度计自带的木盒中。
6.用左手拍右手腕时,注意温度计一定要垂直,否则毛细管容易折断,还应避免重击,不要靠近试验台。
七、思考题1.恒温槽的恒温原理是什么
恒温槽维持恒温,是靠恒温控制器来控制恒温槽的热平衡的,当其因对外散热而使水温降低时,温度指示控制仪就使加热器工作,到加热到所需温度时,通过温度传感器控制加热器停止工作,使槽温保持恒定[1]。
恒温槽也有通过电子继电器对加热器自动调节来实现恒温的目的。
当恒温槽因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作,到体系再次达到设定的温度时,又自动停止加热。
这样周而复始,使体系的温度在一定范围内保持恒定。
2.恒温槽内各处的温度是否相等
为什么
恒温槽内各处温度不相等。
由于搅拌器搅拌不会很均匀,靠近加热器的温度会高一些,而远离加热处会散热快些,温度降低,加热处会补充。
热必须有高温传向低温,因此不可能相同。
3.如何提高恒温槽的灵敏度
试加以分析讨论 (1)使用灵敏度更高,延迟时间更短的元件可以采用加热更加均匀的加热装置,比如电加热套装置。
或采用保温隔热性能更好的容器。
或把接点温度计更换成更高灵敏度,反应速度更快的元件,使得过程中温度变化更小,提高加热器的反应速度,从而提高灵敏度。
(2)优化系统中液体介质。
可以选用粘滞系数更小,热导率更高的液体,从而减少温度波动,提高灵敏度。
(3)使用更合理的布局由实验中的结果总结可知合理布局的特点主要是:加热器与接点温度计距离尽量近;使各元件处在搅拌器搅拌方向的下游,但不能和搅拌器距离过近,否则会而使得温度不稳定。
(4)加大搅拌器的搅拌速度这样可以使槽内介质的传热速度更快,各部分的温度更均匀从而提高系统反应速度。
(5)适当降低加热速度降低加热电压至合适的数值,可以减弱加热延迟现象,提高灵敏度。
八、参考文献[1] 尹 波,黄桂萍,曹利民,屈红恩. 恒温槽调节与温度控制实验条件的探讨[J]. 江西化工,2008,02:120-121.[2] 陈 军. 恒温槽装配和性能测试实验仪器的改进[J]. 琼州大学学报,2004,11(05):40-41.评分 指导师
用热电偶测温度的实验报告
一、热电偶测温基本原理 将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。
如图1所示。
温度t端为感温端称为测量端, 温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0), 因而在回路中形成电流,这种现象称为.这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:EAB(t,t0)=EAB(t)-EAB(t0)式中 EAB(t,t0)-热电偶的热电势; EAB(t)-温度为t时工作端的热电势; EAB(t0)-温度为t0时冷端的热电势。
从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。
要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质: 质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。
这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在而产生附加电势,从而因热电偶材料不均引入误差。
中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。
这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的即可。
同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。
中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。
该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB(t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。
连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。
中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理论依据。
二、各种误差引起的原因及解决方式2.1 热电偶热电特性不稳定的影响2.1.1 玷污与应力的影响及消除方法 热电偶在生产过程中,偶丝经过多道缩径拉伸在其表面总是受玷污的,同时,从偶丝的内部结构来看,不可避免地存在应力及晶格的不均匀性。
因淬火或冷加工引入的应力,可以通过退火的方法来基本消除,退火不合格所造成的误差,可达十分之几度到几度。
它与待测温度及热电偶电极上的大小有关。
廉金属热电偶的偶丝通常以“退火”状态交付使用,如果需要对高温用廉金属热电偶进行退火,那么应高于其使用温度上限,插入深度也应大于实际使用的深度。
贵金属热电偶则必须认真清洗(酸洗和清洗)和退火,以清除热电偶的玷污与应力。
2.1.2 不均匀性的影响 一般来说热电偶若是由均质导体制成的,则其热电势只与两端的温度有关,若热电极材料不是均匀的,且热电极又处于场中,则热电偶会产生一个附加热电势,即“不均匀电势”。
其大小取决于沿热电极长度的温度梯度分布状态,材料的不均匀形式和不均匀程度,以及热电极在温度场所处的位置。
造成热电极不均匀的主要原因有:在化学成分方面如杂质分布不均匀,成分的偏析,热电极表面局部的金属挥发,氧化或某金属元素选择氧化,测量端在高温一的热扩散,以及热电偶在有害气氛中受到玷污和腐蚀等。
在物理状态方面有应力分布不均匀和电极结构不均匀等。
在工业使用中,有时不均匀电势引起的附加误差竟达30℃这多,这将严重地影响热电偶的稳定性和互换性,其主要解决方式就是对其进行检验,只使用在误差允许范围内的热电偶。
2.1.3 热电偶不稳定性的影响 不稳定性就是指热电偶的分度值随使用时间和使用条件的不同而起的变化。
在大多数情况下,它可能是不准确性的主要原因。
影响不稳定性的因素有:玷污,热电极在高温下挥发,氧化和还原,脆化,辐射等。
若分度值的变化相对地讲是缓慢而又均匀的,这时经常进行监督性校验或根据实际使用情况安排周期检定,这样可以减少不稳定性引入的误差。
2.2 参考端温度影响及修正方法 热电偶的热电动势的大小与热电极材料以及工作端的温度有关。
热电偶的分度表和根据分度表刻度的温度显示仪表都是以热电偶参考端温度等于0℃为条件的。
在实际使用热电偶时,其冷端温度(参考端) 不但不为0 ℃,而且往往是变化的,测温仪表所测得的温度值就会产生很大误差,在这种情况下,我们通常采用如下方法来修正。
2.2.1 热电势补正法 由中间温度定律可知,参考端温度为tn时的热电势EAB(t,tn)=EAB(t,t0)-EAB(tn,t0)。
所以,用常温下的温度传感器,只要测出参比端的温度tn,然后从对应电偶的分度表中查出对应温度下的热电势E(tn,t0),再将这个热电势与所实测的E(t,tn)代数相加,得出的结果就是热电偶参比端温度为0度时,对应于测量端的温度为t时的热电势E(t,t0)最后再从分度表中查得对应于E(t,0)的温度,这个温度就是热电偶测量端的实际温度t。
在计算机应用日益广泛的今天,可以利用软件处理方法,特别是在多点测量系统或高温测控中,采用这种方法,可很好的解决参比端温度的变化问题,只要随时准确的测出tn,就可以准确得到测量端温度。
同时还充分应用了对应热电偶的分度表,并对非线性误差得到了校正,而且适应各种热电偶。
2.2.2 调仪表起始点法 由于仪表示值是EAB(tn,t0)对应于热电势,如果在测量线路开路的情况下,将仪表的指针零位调定到tn处,就当于事先给仪表加了一个电势EAB(tn,t0),当用闭合测量线路进行测温时,由热电偶输入的热电势EAB(tn,t0)就与EAB(t,tn)叠加,其和正好等于EAB(t,t0)。
因此对直读式仪表采用调仪表起始点的方法十分简便。
2.2.3 补偿导线 采用补偿导线把热电偶的参考端延长到温度较恒定的地方,再进行修正。
从本质上来说它并不能消除参考端温度不为0℃时的影响,因此,还应该与其它修正方法结合才能将补偿导线与仪表连接处的温度修正到0℃。
此时参考端己变为一个温度不变或变化很小的新参考端。
此时的热电偶产生热电势己不受原参考端温度变化影响, EAB ( T、T10 ) 是新参考端温度T10 (不等于℃) ,且T10 为一常数时所测得热电势, TAB( T、T10 ) 是参考端温度T0 = 0 ℃时,工作端为T10时所测得热电势(热电偶分度表中可查出) 。
使用补偿导线时,不仅应注意补偿导线的极性,还应特别注意不要错用补偿导线,同时应注意补偿导线与热电偶连接处的两端温度保持相等,且温度在0-100℃(或0-150℃)之间,否则要产生测量误差。
2.2.4 参考端温度补偿器 补偿器是一个不平衡电桥,电桥的3 个桥臂电阻是电阻温度系数很小的锰铜丝绕制的。
其阻值基本上不随温度变化而变化,并使R1 = R2 =R3 = 1Ω。
另一个桥臂电阻Rt 是由电阻温度系数较大的铜绕制而成,并使其在20 ℃时Rt = R1 =1Ω ,此时,没有电压输出,当电桥所处温度发生变化时, Rt 的阻值也随之改变,于是就有不平衡电压输出,此输出电压用来抵消参考端温度变化所产生的热电势误差,从而获得补偿。
(注:我国也有以0℃作为平衡点温度的)当温度达到40℃(即计算点温度)时桥路的输出电压恰好补偿了热电偶参比端温度偏离平衡点温度而产生的热电势变化量。
对电子,其测量桥路本身就具有温度自动补偿的功能,使用时无需再调整仪表的温度起始点。
除了平衡点和计算点外,在其他各参比端温度值时只能得到近似的补偿,因此采用冷端补偿器作为参比端温度的处理方法会带来一定的附加误差。
2.3 传热及热电偶安装的影响 由于热电偶测温是属于接触式测量,当热电偶插入被测介质时,它要从被测介质吸收热量使自身温度升高,同时又以热辐射方式和热传导方式向温度低的地方散发热量,当测量端各外散失的热量等于自气流中吸收的热量时即达到动态平衡,此时热电偶达到了稳定的示值,但并不代表气流的真实温度,因为测量端环境散失的热量是由气流的加热来补偿,也就是说测量端与气流的热交换处于不平衡状态,因此,它们的温度也不可能具有相同的数值。
测量端与环境的传热愈强,测量端的温度偏离气流温度也愈大。
2.3.1 热辐射误差 热辐射误差产生的原因是热电偶测量端与环境的辐射热交换所引起的,这是热电偶与气流之间的对流换热不能达到热平衡的结果。
减少辐射误差的办法,一是加剧对流换热,二是削弱辐射换热。
具体方法有: 尽量减少器壁与测量端的温差,即在管壁铺设绝热层; 在热电偶工作端加屏蔽罩; 增大流体,即增加流速,加强扰动,减小偶丝直径或使热电极与气流形成跨流等。
2.3.2 导热误差 在测量高温气流的温度时,由于沿热电偶长度存在温度梯度,故测量端必然会沿热电极导热,使得指示温度偏离实际温度。
导热量相差越多,相应的误差就越大,因此凡能加剧对流和削弱导热的因素都可以用来减少导热误差。
具体方法有: 增加L\\\/d; 将热电偶垂直安装改成斜装或弯头处安装,安装时应注意使热电偶的端对着气流方向,并处在流速最大的位置上; 选用热电偶和支杆导热系数较小的材料。
2.4 测量系统漏电影响 绝缘不良是产生电流泄漏的主要原因,它对热电偶的准确度有很大的影响,能歪曲被测的热电势,使仪表显示失真,甚至不能正常工作。
漏电引起误差是多方面的,例如,热电极绝缘瓷管的较差,使得热电流旁路。
若电测设备漏电,也能使工作电流旁路,使测量产生误差。
由于测量热电势的都是低电阻的,因此它对的要求并不高,影响热电势测量的漏电主要是来处被测系统的高温,因为热电偶保护管和热电极的绝缘材料的将随着温度升高而下降,我们通常所说的的“分流误差”就属这类情况。
一般是采用接地或其它屏蔽方法。
对的分流误差我们通常是以增大其直径;增加绝缘层厚度;缩短加热带长度;降低热电偶的电阻值等方法来降低误差的。
2.5 动态响应误差 热电偶插入被测介质后,由于本身具有热惰性,因此不能立即指示出被测气流的温度,只有当测量端吸、放热达到动态平衡后才达到稳定的示值。
在热电偶插入后到示值稳定之前的整个不稳定过程中,热电偶的瞬时示值与稳定后的示值存在着偏差,这时热电偶除了有各种稳定的误差外,还存在由热电偶热惰性引入的偏差,即动态响应误差。
克服这类误差的方法,一是确定动态响应误差,予以修正;二是将动态响应误差减少到允许要求的范围之内,此时可认为T测=T气。
2.6 短程有序结构变化(K状态)的影响 K型热电偶在250-600℃范围内使用时,由于其显微结构发生变化,形成短程有序结构,因此将影响热电势值而产生误差,这就是所谓的K状态。
这是Ni-Cr合金特有的晶格变化,当WCr在5%-30%范围内存在着原子晶格从有序至无序为。
由些引起的误差,因Cr含量及温度的不同而变化。
一般在800℃以上短时间热处理,其热电特性即可恢复。
由于K状态的存在,使K型热电偶检定规程中明文规定检定顺序:由低温向高温逐点升温检定。
而且在400℃检定点,不仅传热效果不佳,难以达到热平衡,而且,又恰好处于K状态误差最大范围。
因此,对该点判定合格与否时应很慎重。
Ni-Cr合金短程有序结构变化现象,不仅存在于K型,而且,在E型热电偶正极中也有此现象。
但是,作为变化量E型热电偶仅为K型的2\\\/3。
总之,K状态与温度、时间有关,当温度分布或热电偶位置变化时,其偏差也会发生很大变化。
故难以对偏差大小作出准确评价。
三、小结 通过对热电偶原理及误差来源的总结,对以热电偶温度计量误差情况有了系统认识,得出了一些结论。
热电偶的不稳定性、不均匀性、参考端温度变化、热传导以及热电偶安装使用不当会引起测量误差,有一些是由于加工制造过程中,或是测量系统及仪器本身存在的误差,还有一些则是人为造成的,对这一部分只要我们细心并对热电偶的特性有一定的了解则是可以避免的。
供暖公司 实习心得
2012年12月10日,天气虽然恶劣,但我还是一路辗转来到河南亿星周口天然气股份有限公司.在实习过程中.我抱着虚心的态度,积极地记下并了解各种设备的结构,及时向指导老师李老师和老员工请教自己不理解的疑问,去总结我们认识上许多错误的认识.由于在实习之前我查阅了相关资料,所以对于老师的讲解较为理解,使我对天然气长距离输送和短距离输送和天然气锅炉有较清楚的认识。
一,实习目的:建筑环境与设备工程专业生产实习,是重要的实践教学环节,通过生产实习可以使学生对本专业从事的领域和业务,本专业的工程情况建立一定的认识,使同学们明确自己的专业范围,了解专业一些基础的设计,施工,维护管理,调试等方面的知识.为以后的专业学习打下必要的基础.二,实习内容:1,气源部分熟悉天然气锅炉的构造,工作原理,主要参数;熟悉天然气锅炉的工艺流程及设备,发生站流程及设备;天然气锅炉由三部分组成:燃烧设备,换热设备,自动控制和安全保护装置.燃烧设备主要是由燃气燃烧器,点火装置,燃烧室,送风与排烟系统组成.目前国内锅炉的内部换热设备有两种,一种是采用套管换热器,也就是生活热水套在采暖换热器内,直接由火来加热;另一种结构形式是生活热水采用间接加热,即 通过板式换热器来换热.自动控制及安全保护装置主要有风压开关,流量开关,熄火保护,缺水保护,过热保护,温度传感器和控制器等组成.燃气壁挂锅炉的工作 可以简单看成由两个过程组成:一个是燃烧过程,就是将燃料与空气混合着火燃烧释放出化学反应热的过程;另外一个是传热过程,就是指把燃料燃烧释放的化学反 应热通过受热面传递给水的过程.当燃气供给阀打开,按下启动按钮,燃气壁挂锅炉将自动完成整个燃烧和换热过程.首先是风机启动,风压开关工作,空气进入进行20秒的前吹扫,然后燃气电磁 阀打开,燃气进入燃气燃烧器,同时点火变压器开始工作,将220V电压变成6000V以上高电压,两个点火电极彼此放电(若一个电极则是对地放电)形成电 弧把燃气引燃,熄火保护装置执行保护工作监视燃烧室火焰状况.燃气在燃烧室中燃烧,把换热器中的锅水加热,锅水温度升高用于供暖或将生活热水加热,水把燃 气燃烧形成的化学反应热进行有效吸收,完成热量的传递过程.2,输配部分熟悉城市管网的布置特点,压力级制和各种构筑物(门站或储配站,区域调压站)的工艺流程,工作原理及站内主要设备.熟悉液化石油气储配站的布置,工艺流程及运行原理.天然气输配系统包括一种或多种压力等级的管网和相应的设施,其任务是将燃气从供气源点,如城市门站,贮气设施或制气厂,经济,安全,可靠地向用户供气.随着各国城市燃气气源的发展和变化,城市规划的不同特点,供气规模的大小和科学技术的进步,燃气输配系统也有一个演变的过程.在人工燃气时代,供气规模较 小,民用户占主要地位,因而供气压力较低,输配系统的组成也比较简单.自从天然气成为城市的主要气源后,由于用户结构发生了根本的变化,城市燃气输配系统 也发生了根本的变化.现代化的城市燃气输配系统是复杂的综合设施,通常由低压,中压及高压等不同压力等级的燃气管网,城市燃气分配站或压气站,调压计量站或区域调压站,储备 站,监控与调度中心,维护管理中心.与人们的生活以及社会的生产有着息息相关的联系,发挥着巨大的作用,作为一名城建学子,应该为自己以后能创造的巨大价 值感到骄傲和自豪.以下气输配系统构成可见图1-1.对于李师傅提到的门站,很多同学当时都不懂,现在我简要介绍一下.城市燃气门站通常称作调压计量站.是长距离输气管线与城市燃气输配系统交接处的燃气调压计量设施,简称城市门站.来自长距离输气管线的燃气,先经过滤 器清除其中机械杂质,然后通过调压器(见燃气调压器),流量计(见燃气计量)进入城市燃气输配系统.如燃气需要加臭(使燃气具有明显气味,以便漏气时易于 察觉),则调压,计量后要经过加臭装置.当燃气进站或出站压力超过规定压力时,安全装置自动启动.站内发生故障时,可通过越站旁通管供气.长距离输气管线 如采用清管器清管,则可将清管器接收装置设在燃气门站内,以利集中管理.(见图)对于城市管网的压力级制从郭师傅的讲解及自己所了解的情况来看,压力级制主要是确定高压输气和中压配气的压力.合理的压力级制既能保证城市供气的需要,又 可以减少管网和储气设备的投资.一般中等城市的输气管道压力为1.6Mpa.中压管网的工作压力一般规定在0.4Mpa.经过对天然气成分的分析及对安全方面的考虑,我们知道,天然气的主要成分是由95%以上的甲烷,和其他一些如硫化物及其他烃组成.天然气本身是不会让人中 毒的.但是它会燃烧,由于天然气本身无色无味,易燃易爆,在使用过程中,一旦泄漏很难被发现,而加入燃气泄漏示警的臭味剂之后,即使有微量的泄漏,也可被 及时发现.因此,为提高民用天然气的使用安全,输配公司在配气装置上都添加了加臭装置,这样,一旦发生天然气泄漏,便于用户及时发现,避免重大事故的发 生.3,燃烧与应用部分燃气作为燃料,具有使用方便,火力强,热效率高,对环境污染小,易实现生产自动化及提高产品质量等优点,但也有易燃易爆及有毒等特点.事实上,多年来因种 种原因,如设计不当,施工不良,生产或使用过程违犯操作规程,发生泄漏未能及时正确处理等等而造成的爆炸,燃烧,中毒事件已经屡见不鲜,给国家和当事人造 成了不必要的巨大损失,因此在应用燃气时必须采用必要的安全技术措施.1,为了防止泄漏燃气必须保证以下条件1—1管材,阀门采用优等合格材料,并应在安装使用前进行技术检查.1—2要严格施工,保证施工质量,特别是在焊接,连接件的密封处及绝缘等方面要保证质量.1—3对燃气管道,管件及设备构件应按照安技规程进行强度及严密性试验,发现问题应及时处理.1—4在生产运行中应利用科学仪器,经常进行检查,特别是地下室内管道,管道连接处,阀门,集气管等要害部位有无泄漏现象,已经发现应迅速修理消除漏气隐患.1—5设计与安装燃气设备时应遵守安全规范,最好应安装瓦斯泄漏测定仪.铺设管道尽量安排在地上,这样有利于检查,维修(



