欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 初中数学新课标函数心得体会

初中数学新课标函数心得体会

时间:2019-06-29 05:35

初中数学学习体会

学习感想——思路决定出路人的学习是无止境的,只有不断的学习,才能给自己更丰富,更开阔的思路,经过两天的学习,让我感悟到很多事情,都是有两面性的,穷则变,变则通,出路在于变通,当目前的想法不能成功,说明你的想法有可能是错的,或者是由于没有改变自己的思路或者是懒于改变自己的思路或者是根本不想改变自己的思路,成功总有方法,想成功就要找方法,而思考是一切正确策略和方法的起源,思考其实就是问与答的过程,当你做一件事情没有达到目标时,问自己一个为什么

问自己问题出在了哪里,然后自己给出答案,学会反思学会换位思考。

“没有不好的孩子,只有不好的教育”,例如,在课堂中,在一日生活中孩子没有如我们所预想的那样做一些正确的事情,不能达到我们所要求的目标时,我们只能对孩子着急吗

与其对孩子发脾气,不如改变自己的教育观点理念,反思自己为什么,不能懒于改变自己的思路,就要求别人去适应自己的思路,我们何不反思自己从事情的另一个角度开始着手,可能会有意外收获,就像我们经常说的,给孩子机会孩子就会给你惊喜。

从中,我还深刻的理解到一个道理,大凡世界上能做大事的人,都能把小事做细,做好,做好了每件小事逐渐积累就会发生质变,小事就会变成大事,任何一件小事只要你把它做规范了,做到位了,做透了,你就会从中发现机会,找到规律,从而成就大事,也就是说,一件事情我会做了,但做好了吗,做精了吗,一个人无论从事何种职业,都应该尽心尽责

如何进行初中数学试题的命题学习心得

一、内容系统《课程标准》将初中阶段的内容和要求划分为5个方面,对于各学段的的学习内容提出了详细的要求及活动建议。

可概括为:数与运算——分数及其运算,有理数及其运算,实数及其运算方程与代数——一次方程与一次不等式,整式与分式,一元二次方程,二次根式,简单的代数方程图形与几何——直观几何,实验几何,论证几何,函数与分析——函数概念,正、反比例函数,一次函数,二次函数数据处理与概率统计——概率问题,统计初步知识二、内容变化要点总体而言,《课程标准》继承了过去教材内容结构的特点,又尽量地弥补不足,构造了新的初中数学教材内容体系。

主要变化有:1、基于计算机(器)的应用,删简用纸笔进行繁复的数值计算的内容,削减孤立的加、减、乘、除、乘方、开方的繁复演练;2、精简关于式的运算、变形、求值的内容和单纯解方程(组)训练的内容;削减繁杂的求函数定义域、单纯求函数值和用描点法画复杂函数图象的内容。

3、强调通性通法,对解一元一次、二次方程有分层次要求,第一次注重利用通性探索解法,第二次注重方程求解和应用,基本形成方程理论。

4、精炼实验几何内容,加强论证几何与实验几何的有机整合,展现“实验—归纳—猜测—论证”的过程,控制论证几何的难度。

5、从数学知识整合和学生发展需要着眼,引进平面向量加强线性运算,提前渗透概率统计初步知识。

三、教材编写设计教材内容编排: 混合编排,有序展开,内容呈现方式:情境导入,活动穿插,内容处理要求:直观引进,说理明白,四、新课程标准也对我们教师的课堂教学提出了更新的要求,需要我们认真实践,不断总结。

1、 注重概念的形成过程。

从实践情况来看,数学概念的教学相比其他内容来讲难度要更大一些。

每一个数学概念都有其产生、形成并不断完善的过程,在教学中如何扎扎实实地引导学生完成概念形成的每一个步骤,而不仅仅是在字面上逐字逐句地再现概念,如果没有经历概念形成的全过程,学生往往很难全面正确地理解概念,很容易造成对概念的片面、孤立甚至是错误的理解。

具体做法可以通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论逐步形成的过程,比如在讲无理数的概念时,要让学生在问题的引导下开展探索活动,经历认识过程,从中感知无限不循环小数的存在性,感受引入新数的必要性,体会理性思维的精神,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。

2、 数学中有许多问题都具有生活背景和意义,这需要教师“沉入”教材“细细揣摩”,在教学中发掘问题的内在联系,抽象问题的本质,进而用数学语言(符号)来表达问题的实质。

比如“有序数对”的提出就来源于生活,可设计相关的活动,让学生获得这方面的经验,感受数学与生活的联系,当然,还必须进行数学的想象和理性的思考,这样学生学数学,对数学本性会有更深的认识。

3、 在解题过程中要让学生领悟、提炼、概括出数学思想方法。

又如在“平面直角坐标系”这一章中,就可以贯穿数形结合的思想,如点与坐标、两点间距离公式、直线的代数表示形式、用坐标变化描述点的运动等都表明了数与形之间的联系。

当然初中数学中所蕴涵的思想方法也是很丰富的,任何一个数学思想也不是在一次教学活动中就能落实到位的,有一个逐步渗透、贯彻、落实、领会的长期的过程。

4、 培养学生对知识的迁移能力,通过解题后的反思,让学生“领悟”:数学问题的背景可以千变万化,而其中运用的数学思想方法往往是相通的。

学习数学重在掌握这种具有普遍意义和具有迁移价值的、能反映数学本质的“策略性”知识,注重问题间的类比,使解题反思成为自觉的行动,这样才能达到举一反三、有例及类、解一题通一片的目的。

初中数学数与代数)本次新课程标准在“函数”这部分变化的内容有哪些

结合自己教学实践谈谈如何培养学生

课标对函数这一部分的解读:1.函数 (1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义。

凡是打星号的内容是选学内容,不作考试要求。

(2)结合实例,了解函数的概念和三种表示法,能举出函数的实例。

(3)能结合图像对简单实际问题中的函数关系进行分析(参见例55)。

(4)能确定简单实际问题中函数自变量的取值范围,并会求出函数值。

(5)能用适当的函数表示法刻画简单实际问题中变量之间的关系(参见例56)。

(6)结合对函数关系的分析,能对变量的变化情况进行初步讨论(参见例57)。

2.一次函数 (1)结合具体情境体会一次函数的意义,能根据己知条件确定一次函数的表达式(参见例58)。

(2)会利用待定系数法确定一次函数的表达式。

(3)能画出一次函数的图像,根据一次函数的图像和表达式),=h +b(k≠0)探索并理解k>O和k

(4)理解正比例函数。

(5)体会一次函数与二元一次方程的关系。

(6)能用一次函数解决简单实际问题。

3.反比例函数 (1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。

(2)能画出反比例函数的图像,根据图像和表达式少=生(后≠0)探索并理解k>O和k

(3)能用反比例函数解决简单实际问题。

4.二次函数(1)通过对实际问题的分析,体会二次函数的意义。

(2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

(3)会用配方法将数字系数的二次函数的表达式化为 y= a(x - h)2+尼的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。

(4)会利用二次函数的图像求一元二次方程的近似解。

(5)宰知道给定不共线三点的坐标可以确定一个二次函数。

您认为初中数学课程标准还可以做哪些调整?请简要说出您的建议。

初中课程个人认为还是有点儿简单,最好在加点儿高中的函数部分,这样也为高中减轻一点儿压力 同时要注重开阔学生的创新思维,适当向他们介绍一些题目的新解 呵呵,想当初,我初中的时候,用过函数来解几何 ,几何来解函数 ,向量来解几何 都是自己想出来的 成就感和自信也是这样充一次次向老师表达自己的想法之中得到增长。

课堂中老师不是主角,学生才是,有时数学一节课我的初中老师只会讲一道题,让学生自己来表达其不同的想法。

我要初中数学所有学的公式!(新课标)

一次函数:图象是一条直线。

当k大于0,b大于0时,图象过一、二、三象限,y随x增大而增大,函数图象从左到右依次上升;当k大于0,b小于0时,图象过一、三、四象限,y随x增大而增大,函数图象从左到右依次上升;当k小于0,b大于0时,图象过一、二、四象限,y随x减小而减小,函数图象从左到右依次下降;当k小于0,b小于0时,图象过二、三、四象限,y随x减小而减小,函数图象从左到右依次下降; 正比例函数:图象是一条过原点的直线。

当k大于0时,图象过一、三象限,y随x增大而增大,函数图象从左到右依次上升;当k小于0时,图象过二、四象限,y随x减小而减小,函数图象从左到右依次下降; 反比例函数:图象是双曲线。

当k大于0时,图象过一、三象限,y随x增大而减小,在每个象限内,函数图象从左到右依次下降;当k小于0时,图象过二、四象限,y随x减小而增大,在每个象限内,函数图象从左到右依次上升; 二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax2 y=a(x-h)2 y=a(x-h)2+k y=ax2+bx+c 顶点坐标 (0,0) (h,0) (h,k) () 对 称 轴 x=0 x=h x=h x= 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到. 当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 因此,研究抛物线 y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=,顶点坐标是(). 3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小. 4.抛物线y=ax2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x2-x1|=. 当△=0.图象与x轴只有一个交点; 当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0. 5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x=时,y最小(大)值=. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现. 三角形两边的和大于第三边 三角形两边的差小于第三边 三角形的一个外角等于和它不相邻的两个内角的和 三角形的一个外角大于任何一个和它不相邻的内角 在角的平分线上的点到这个角的两边的距离相等 到一个角的两边的距离相同的点,在这个角的平分线上 直角三角形斜边上的中线等于斜边上的一半 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 n边形的内角的和等于(n-2)×180° 菱形面积=对角线乘积的一半,即S=(a×b)÷2 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 相似三角形周长的比等于相似比 相似三角形面积的比等于相似比的平方 ①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r) ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r) 正n边形的每个内角都等于(n-2)×180°/n 弧长计算公式:L=n兀R/180 S扇形=n兀R^2/360=LR/2 内公切线长= d-(R-r) 外公切线长= d-(R+r) X1+X2=-b\\\/a X1*X2=c\\\/a 注:韦达定理 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1\\\/2c*h' 正棱台侧面积 S=1\\\/2(c+c')h' 圆台侧面积 S=1\\\/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1\\\/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1\\\/2*l*r 锥体体积公式 V=1\\\/3*S*H 圆锥体体积公式 V=1\\\/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)\\\/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)\\\/6 13+23+33+43+53+63+…n3=n2(n+1)2\\\/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)\\\/3 y=(x-h)^2+k顶点式y=a(x-x1)(x-x2)(a不等于0)十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

2、十字相乘法只适用于二次三项式类型的题目。

3、十字相乘法比较难学。

5、十字相乘法解题实例: 1)、 用十字相乘法解一些简单常见的题目 例1把m²+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 解:因为 1 -2 1 ╳ 6 所以m²+4m-12=(m-2)(m+6) 例2把5x²+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。

当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解: 因为 1 2 5 ╳ -4 所以5x²+6x-8=(x+2)(5x-4) 例3解方程x²-8x+15=0 分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解: 因为 1 -3 1 ╳ -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4、解方程 6x²-5x-25=0 分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

解: 因为 2 -5 3 ╳ 5 所以 原方程可变形成(2x-5)(3x+5)=0 所以 x1=5\\\/2 x2=-5\\\/3 2)、用十字相乘法解一些比较难的题目 例5把14x²-67xy+18y²分解因式 分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y 解: 因为 2 -9y 7 ╳ -2y 所以 14x²-67xy+18y²= (2x-9y)(7x-2y) 例6 把10x²-27xy-28y²-x+25y-3分解因式 分析:在本题中,要把这个多项式整理成二次三项式的形式 解法一、10x²-27xy-28y²-x+25y-3 =10x²-(27y+1)x -(28y²-25y+3) 4y -3 7y ╳ -1 =10x²-(27y+1)x -(4y-3)(7y -1) =[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1) 5 ╳ 4y - 3 =(2x -7y +1)(5x +4y -3) 说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)] 解法二、10x²-27xy-28y²-x+25y-3 =(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y =[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y =(2x -7y+1)(5x -4y -3) 2 x -7y 1 5 x - 4y ╳ -3 说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3]. 例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0 分析:2a²–ab-b²可以用十字相乘法进行因式分解 解:x²- 3ax + 2a²–ab -b²=0 x²- 3ax +(2a²–ab - b²)=0 x²- 3ax +(2a+b)(a-b)=0 1 -b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1 -(2a+b) 1 ╳ -(a-b) 所以 x1=2a+b x2=a-b 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项 系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= .

义务教育 数学 课程标准2011版读后感

读《义务教育数学课程标准》有感 《数学课程标准》把学生的发展放在首位,实现了人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

我们知道,学生有一种与生俱来的探索式的学习方式,他们的知识经验是在客观世界的相互作用中逐渐形成的,有意义的学习应是学生以一种积极的心态,调动原有的知识和经验,去认识新知。

而新的数学课程标准从学习者的生活经验和已有的知识情景出发,提供给学生充分进行数学实践活动和交流机会,体现了学生是学习数学的主人,教师是学生学习数学的组织者,引导者,合作者。

《课标》的精神和要求合理,灵活。

下面谈谈我对学习《课标》后的几点体会。

一是教学内容,多与现实生活相结合,《课标》强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释和应用,使学生对数学产生亲切感,才能有益于学生发现,理解,探索和应用数学。

注意从熟悉的生活背景引入,数学的教学内容大多数可以联系学生的生活实际,创设情景导入新课,这样的引入,贴近学生的生活,沟通了书本知识与现实生活的联系,使学生真切地感受到数学的确就在身边,现实生活的确离不开数学,从而消除了对数学的陌生感;二是强调了解决问题策略的多样化,使学生有权选择他们喜欢的方法解决问题,有利于促进学生的数学思维活动,提高数学能力;三是内容强调尊重学生差异因材施教,个别差异是客观存在的,我们要认识到每个学生都是特殊的个体,都是具有不同兴趣,爱好,个性的活生生的人,我们要承认这种差异。

然后因材施教。

经验在学生的数学学习过程中有着重要的作用,是学生理解数学知识,形成数学思想的基础。

没有亲历的数学活动就谈不上经验。

正如荷兰数学教育家弗赖登塔尔所说:“数学学习是一种活动,这种活动与游泳、骑自行车一样,不经过亲身体验,仅仅从看书本、听讲解、观察他人的演示是学不会的。

”所以新课程大力提倡“做数学”。

不过光“做”也不行,还要善“思”。

教师在教学中要经常引导学生对“做数学”的过程进行反思,反思自己失败的教训和成功的经验,反思自己如何从“山穷水尽疑无路”的处境到达“柳暗花明又一村”的境地,只有在不断的反思中才能积累起宝贵的数学经验,才能找到开启数学之门的金钥匙。

初中数学课程标准修订的几个问题

浅谈初中数学新修订课标程内容的变化课改多年了,改的教材、课程在实施、反复修订的过程中不断完善,2012年秋季全面使用的新的初中数学教材能坚持我国数学教育优良传统,针对问题进行改革,很好地处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性,与之对应的课程标准也发生了显著的变化,特别是对课程内容的设置更加合理准确,主要体现在以下四个方面。

课程内容具体变化——数与代数,1. 删去的内容:对大数的认识与应用“能对含有较大数字的信息作出合理的解释和推断”;“有效数字”的概念;能根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题。

2.增加的内容:知道|a|的含义(这里a表示有理数);最简二次根式的概念、最简分式的概念;整式的乘法增加一次式与二次式相乘;能用一元二次方程根的判别式判断方程是否有实根和两个实根是否相等;会利用待定系数法确定一次函数的解析表达式 ;了解一元二次方程根与系数的关系; 能解简单的三元一次方程组;知道给定不共线的三点坐标可以确定一个二次函数。

3.要求上有变化的内容:课程内容具体变化——图形与几何,“图形的认识”“图形与证明”合并为“图形的性质”;“图形与变换”→“图形的变化”。

1. 删去的内容:关于等腰梯形的相关要求;探索并了解圆与圆的位置关系;关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等;关于镜面对称的要求。

2 增加的内容:会比较线段的大小,理解线段的和、差,以及线段中点的意义;了解平行于同一条直线的两条直线平行;会按照边长的关系和角的大小对三角形进行分类;了解并证明圆内接四边形的对角互补;了解正多边形的概念及正多边形与圆的关系;尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形;了解平行线性质定理的证明;探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧;探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等;了解相似三角形判定定理的证明。

课程内容具体变化——统计与概率,三个学段层次更加明确,第三学段:画扇形图,频数直方图,加权平均数,中位数,众数,方差。

简单随机抽样。

强调对“随机”的体会,通过案例了解简单随机抽样;通过表格、折线图等了解随机现象的变化趋势。

加强体会数据的随机性,明确指出所涉及的随机现象都基于简单随机事件,删去极差、频数折线图。

要求上有变化的内容:课程内容具体变化——综合与实践,第一学段,以实践活动为主要形式;第二学段,学生将在教师的指导下,经历有目的、有设计、有步骤、有合作的综合与实践活动;第三学段,(1)结合实际情境,经历设计解决具体问题的方案,并加以实施的过程,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。

(2)会反思参与活动的全过程,将研究的过程和结果形成报告或小论文,并能进行交流,进一步获得数学活动经验。

(3)通过对有关问题的探讨,了解所学过知识(包括其他学科知识)之间的关联,进一步理解有关知识,发展应用意识和能力。

学生将在教师的引导下,独立思考、合作研究,设计解决具体问题的方案,并加以实施,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。

在课改的路上,我们不断地探索,不断地实践、修改和完善,在新课标的学习践行中,新理念、新思路、新方法不断冲击着站在课改浪尖上的我们,无论遇到多大的艰难险阻,我们紧跟着新课标指引,就不会迷失自己的方向。

如何在初中函数教学中体现新课标思想

一、初中数学函数及数形结合思想概述(一)初中数学函数问题函数是数学领域中的一种关系,是通过一种数理关系确定两种元素的联系,从而使每一个输入值都有一个不同的输出值,从而形成一种对应关系。

在函数的表示中,一般用表示输入值,然后用表示输出值。

简而言之,初中数学的函数问题包含了一次函数、二次函数、反比例函数、锐角三角函数几部分的内容。

这些数学知识不仅是解决所有函数问题的开端,也是今后学生进行函数学习的基础;大而言之,函数贯穿了整个中学的数学教学与学习,具体内容涵盖了七年级的方程、整式、平面直角坐标系等知识,八年级的一次函数,九年级的二次函数和反比例函数,再到后来的锐角三角函数。

其中,最为关键的还是函数基础知识的学习。

如果基础知识掌握得不扎实,则势必会导致后来的教学难以为继。

就二次函数而言,就包含了图象及其性质、、对称轴、顶点、图形变换等等,许多初中学生“谈‘函数’而色变”的说法一点儿也不为过。

新课标对初中数学提出了更高的标准,要求初中教师要注重对学生数学综合能力的培养,因而提高初中函数教学的能力目标更是迫在眉睫。

(二)数形结合思想概述所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想。

数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。

将代数关系以图象的方式呈现出来,体现出了数学的严谨性,使得数与形能够结合起来,进行灵活转换,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大优化了解题过程。

只要将历年的中考题大致翻阅一下,便能发现诸多的初中数学函数题目,而且数形结合广泛地存在于初中数学知识之中,可以利用函数图形进行定性分析,简化解题,并且巧妙地运用数形结合,使抽象表述变得增加具体,以达到事半功倍的效果。

二、数形结合在初中数学教育教学中的运用(一)数形结合思想的导入、展开和升华数形结合的思想能够在初中数学教学发挥出事半功倍的效果,其关键环节在于教师如何将之运用到初中数学的教学之中。

这就需要教师进行巧妙的导入,而不能到了函数教学的“阵前”才进行数形结合思想的导入。

如教师在讲解正负数的时候,就可以将数轴引入到课堂教学之中,而且在整数、分数以及绝对值的讲解之时也加入了数形结合的思想了。

事实上,数形结合知识的引入可以在上面的数学知识学习中进行,但是要对其进行进一步地展开,则是在方程知识的教学之中。

运用数形结合的思维,使方程(组)求解的过程得以简化。

此外,对初中数学中出现的追赶、行程等问题,都可以用数形结合的方式来解题,并且配合图形来描述数学问题,降低初中学生的数学理解难度。

数形结合的一个重要表现是以直观的图形来掌握这个图形规律,并能够做到举一反三、融合贯通。

事实上,数形结合思想还存在于多种初中数学知识之中,如“锐角三角函数”的解析等都会用到数形结合的办法来解决。

(二)一次函数与二次函数的问题数形结合在初中数学一次函数、二次函数教学中运用的最多的,而且也是中数学中最为常见的内容。

在一次函数、二次函数的教学中,教师一定要将函数图形与数学知识结合起来,将图形与函数解析式结合在一起,从而使得数形结合的直观性特点充分显现出来。

对一次函数的数形结合来说,要注意一般形式()中的和;而二次函数则要注意顶点、开口、对称轴这三个要素,讲清楚平移、变形与解析式之间的关系。

对一次函数、二次函数教学,尤其是应用题的讲解来说,一定要从基础教学开始,将知识点的运用与串讲结合起来。

串讲要注意基础知识精讲与运用的结合,因为扎实的基础是应用的保证,也是解题优化的关键。

例如,在讲解二次函数图象经过某几点,求解析式问题的时候,出题人一般都会在这个基础上增加一些相对较难的问题,如与直线、特殊三角形、特殊四边形的结合等等。

解决这些问题,必须要利用数形结合,画出示意图来帮助分析,使解题过程得以优化。

(三)锐角三角函数的问题数形结合与锐角三角函数的关系极为密切。

对于锐角三角函数来讲,一定要充分地展示其仰角、俯角、坡度和坡角等基础概念。

这些概念是后来学习的基础,必须要让每个学生都能画出示意图,将概念与图形结合起来掌握,这样才能解决锐角三角函数中的实际问题。

对正弦、余弦、正切概念的理解更要通过图形来理解,将三角形的变化与数值的变化结合起来,在运算的过程中,弄清数形结合的本质,在具体讲解的时候,要注意以下几点:(1)锐角三角函数问题必须与实际问题相结合,仔细地理解题目,通过图形的变化的过程来具体的理解锐角三角函数的改变与题目的要求,将已知与未知条件在题目中进行标注;(2)通过已知和未知条件来构建直角三角形或锐角三角函数,使得抽象问题得以直观化;(3)熟练地运用直角三角形的性质进行解题,以函数的性质来对具体的问题讲解,通过直角三角函数问题的辅助线转化来进行具体问题的解决。

(四)综合问题初中函数知识之所以是重难点,不仅仅在于函数知识本身,更为重要的是用以解决综合问题。

函数可以与初中数学的任何一个知识点发生联系,如一次函数、反比例函数、二次函数,还有几何中的三角形、四边形、圆等知识,与这些知识的结合使其作为中考压轴题出现在中考试卷之中,而且这些题目都具有分值高、难度大的特点。

函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

因此在初中数学函数教学中,尤其是二次函数的教学,一定要将图形与解析式结合起来,弄清楚图形与方程根之间的关系,弄清楚二次函数与不等式结合的运用。

尤其是在几何问题中,一定要注意几何图形与函数图形的结合,从概念入手,使解题的思路更为清晰,使数形结合的理念在解题运用中得以成为可能。

三、充分运用多媒体手段来辅助进行数学教学传统的初中数学教学对数形结合的呈现主要是通过教师板书来实现的,这在教学中将会占用大量的课堂时间,在一定的程度上会影响教学进度及教学效果。

随着信息技术的发展,多媒体技术的运用使其运用方便了很多,更具直观形象化。

在具体的教学中,教师应该通过课件的展示给学生,如可以采用动态的图象来进行,从而使得内容呈现的更为直观,学生能够更好地掌握数学知识。

结语:数形结合是一个极为复杂的思想,对于不同类型的题目应该区别对待。

具体的解题方式与解题步骤只是数学结合运用过程中的一个表现而已,但却能够极大地提高初中学生的数学学习能力。

值得指出的是,数形结合思想的内化是一个需要长时间训练才能解决的问题。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片