
北师大培训心得体会-心得体会模板
北师大培得体会 培训心得一 我在北师时十天的学习中感刻,学习收获很大。
在学习过程中,我认真听取专家讲解,细心做好学习笔记,用心记下随时获得的学习感受,及时交流、讨论学习中遇到的问题。
这次学习,每个专题讲解都很精彩,体现了在新的教学理念下、新的教学形势下,如何把握好课标,如何正确把握教学知识体系,用什么样地的教学策略,怎么样看待教学素材,怎样有效地实施课堂教学,如何看待学生,如何看待自己,真正把教学的各种因素统一协调起来,上好每一节课从而达到要达到的教学目标。
这次学习中,感受最新的是怎样定位自己,专家把教师定位为研究性的学者,通过对课标的研究、教材的研究、学生的研究、课堂的研究,要求教师准确把握《化学课程标准》的理念、目标和内容。
不断加强自身的学习,研究教学规律,学习新的教育、教学理论,更新教育观念,拓宽自己的知识面,留意社会、科技等的最新发展动态。
在教学中密切社会、生活实际,人类生存环境等。
依靠学习和实践不断提高自身水平做一个学习型的教师,这样做有很多好处,既提高教师自身水平,促进教师的专业发展,又能够灵活运用教材根据学生实际恰当的处理教和学的具体问题,能够最大限度地达到教学相长。
参加北师大特殊教育培训心得体会解析
参加北师大特殊教育培训心得体会在桃红柳绿的四月,我有幸参加了由广州市教育评估和教师继续教育指导中心组织的到北京师范大学进行的特殊教育学校校长高级研修班的培训学习。
这次培训内容丰富充实、形式多种多样:有专家的精彩讲座,有学员间的互动交流,有影子培训,有到北京著名的特殊学校参观交流……回想这二十多天的培训,既有观念上的洗礼,也有理论上的提高,既有知识上的积淀,也有教学技艺的增长,对于首次参加此类培训的我来说真是大开眼界。
下面谈谈自己的一些培训心得体会:首先是思想上的认识更深刻。
我来自普通学校,校长和教师参加此类的培训的机会比较少,本次的培训使我思想上对特殊教育有了更深刻的认识。
北京西城区培智中心学校的卢燕云校长在讲座中及我们参观她学校时都给我们提到:作为特殊教育我们要认识到了自己身上的担子是光荣的,要进一步体会到了做为一名特殊教育领域的教师所担负的责任的重大与神圣。
正如她所说我们从事的特殊教育工作是特殊的行业更是大爱的行业,绝对是太阳底下最光辉的事业,它不但为家庭解困,更为社会分忧。
我们做为一名特教教师就应该立足本岗位,关心爱护学生,最大限度地补偿特殊儿童的缺陷,挖掘其潜力,帮助他们生存于社会,适应社会生活,成为一名自立于社会的人。
童义务教育的均衡发展。
北师大版初一历史总结
不同地区的考试要求不同 若是为中考做准备的话 老师最后会有总结若是初一期末考 自己把关键点看看 也就是主要课题中的黑体字部分
七年级上册数学北师大版每一章的心得(知识点要写出你自己的体会) 每一章的!!
北师大版初中数学定理知识点汇总[七年级下册(北师大版)]第一章 整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。
五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
※2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。
※3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即 。
¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
八.完全平方公式¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,¤即 ;¤口决:首平方,尾平方,2倍乘积在中央;¤2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。
九.整式的除法¤1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;¤2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
第二章 平行线与相交线一.台球桌面上的角※1.互为余角和互为补角的有关概念与性质如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。
二.探索直线平行的条件※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
三.平行线的特征※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
四.用尺规作线段和角※1.关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第三章生活中的数据※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。
¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
¤3.统计工作包括:①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。
第四章 概率¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。
※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。
※3.了解必然事件和不可能事件发生的概率。
必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0
这里要注意两点:①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的长分别为a、b、c则:①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。
3.关于三角形的内角和三角形三个内角的和为180°①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
4.关于三角形的中线、高和中线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
二.图形的全等¤能够完全重合的图形称为全等形。
全等图形的形状和大小都相同。
只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。
四.全等三角形¤1.关于全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角所谓“完全重合”,就是各条边对应相等,各个角也对应相等。
因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。
※2.全等三角形的对应边相等,对应角相等。
¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。
五.探三角形全等的条件※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”六.作三角形1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。
2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。
3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。
八.探索直三角形全等的条件※1.斜边和一条直角边对应相等的两个直角三角形全等。
简称为“斜边、直角边”或“HL”。
这只对直角三角形成立。
※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。
直角三角形的其他判定方法可以归纳如下:①两条直角边对应相等的两个直角三角形全等;②有一个锐角和一条边对应相等的两个直角三角形全等。
③三条边对应相等的两个直角三角形全等。
第七章 生活中的轴对称※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
※2.角平分线上的点到角两边距离相等。
※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。
※4.角、线段和等腰三角形是轴对称图形。
※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
※6.轴对称图形上对应点所连的线段被对称轴垂直平分。
※7.轴对称图形上对应线段相等、对应角相等。
九.整式的除法¤1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;¤2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
第二章 平行线与相交线一.台球桌面上的角※1.互为余角和互为补角的有关概念与性质如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。
二.探索直线平行的条件※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
三.平行线的特征※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
四.用尺规作线段和角※1.关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第三章生活中的数据※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。
¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
¤3.统计工作包括:①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。
第四章 概率¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。
※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。
※3.了解必然事件和不可能事件发生的概率。
必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0
这里要注意两点:①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的长分别为a、b、c则:①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。
3.关于三角形的内角和三角形三个内角的和为180°①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
4.关于三角形的中线、高和中线①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
二.图形的全等¤能够完全重合的图形称为全等形。
全等图形的形状和大小都相同。
只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。
四.全等三角形¤1.关于全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角所谓“完全重合”,就是各条边对应相等,各个角也对应相等。
因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。
※2.全等三角形的对应边相等,对应角相等。
¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。
五.探三角形全等的条件※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”六.作三角形1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。
2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。
3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。
八.探索直三角形全等的条件※1.斜边和一条直角边对应相等的两个直角三角形全等。
简称为“斜边、直角边”或“HL”。
这只对直角三角形成立。
※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。
直角三角形的其他判定方法可以归纳如下:①两条直角边对应相等的两个直角三角形全等;②有一个锐角和一条边对应相等的两个直角三角形全等。
③三条边对应相等的两个直角三角形全等。
第七章 生活中的轴对称※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
※2.角平分线上的点到角两边距离相等。
※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。
※4.角、线段和等腰三角形是轴对称图形。
※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
※6.轴对称图形上对应点所连的线段被对称轴垂直平分。
※7.轴对称图形上对应线段相等、对应角相等。
线段 线段 ◆有限长度,可以测量 ◆两个端点线段描述 线段(segment),技术制图中的一般规定术语,是指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
连接两点间的长度叫做这两点间的距离(distance)。
直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点. 线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。
两点之间,线段最短。
直线没有距离。
射线也没有距离。
直线上两个点和它们之间的部分叫做线段。
①角的静态定义:具有公共点的两条射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
②角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边 ③角的符号:∠ 角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,角可以分为锐角、直角、钝角、平角、周角这五种。
锐角:小于90°的角叫做锐角 直角:等于90°的角叫做直角 钝角:大于90°而小于180°的角叫做钝角 平角:等于180°的角叫做平角 优角:大于180°小于360°叫优角 周角:等于360°的角叫做周角你自己听讲解吧
9上数学总结《北师大版》前三章
你好
希望我的答案能给你帮助。
第一章 证明(二)1.公理:三边对应相等的两个三角形全等(SSS)。
2.公理:两边及其夹角对应相等的两个三角形全等(SAS)。
3.公理:两角及其夹边对应相等的两个三角形全等(ASA)。
4.公理:全等三角形的对应边相等、对应角相等。
5.推论:两角及其中一角的对边对影响等的两个三角形全等。
6.定理:等腰三角形的两个底角相等。
(等边对等角)7.推论:等腰三角形顶角的平分线、底边上的中线、地边上的高互相重合。
8.定理:有两个角相等的三角形是等腰三角形。
(等角对等边)9.定理:有一个角等于60°的等腰三角形是等边三角形。
10.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
11.定理:直角三角形两角直角边的平方和等于斜边的平方。
12.定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
13.定理:斜边和一条直角边对应相等的两个直角三角形全等。
14.定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
15.定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
16.定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
17.定理:角平分线上的点到这个角的两边的距离相等。
18.定理:在一个角的内部,且到角的两边距离相等点,在这个角的平分线上。
19.定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
20.反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果从而证明命题的结论一定成立,这种证明方法称为反证法。
21.逆命题:两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
22.逆否命题:一个命题是真命题,它的逆命题却不一定是真命题,但是它的逆否命题一定是真命题。
如果一个定理的逆命题经过证明是真命题,那么它也是定理,这两个定理为互逆定理。
其中一个定理称为另一个定理的逆定理。
23.熟练运用 公理、定理证明几何问题。
第二章一元二次方程1.只含有一个未知数x的整式方程并且都可以化成 +bx+c=0(a,b,c为常数,a)的形式,这样的方程叫做一元二次方程。
,bx,c分别成为二次项、一次项和常数项,a、b分别成为二次项系数和一次项系数。
2.配方法:我们通过配成完全平方方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
3.公式法:用求根公式 解一元二次方程的方法称为公式法。
4.分解因式法:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积的形式,从而得出方程的解,这种方法称为分解因式法。
第三章证明(三)1.定理:平行四边形的对边相等。
2.定理:平行四边形的对角相等。
3.定理:同一个底的两个角相等的梯形是等腰梯形。
4.定理:两组对边分别想的的四边形是平行四边形。
5.定理:一组对边平行且相等的四边形是平行四边形。
6.定理:三角形的中位线平行于第三边,且等于第三边的一半。
7.定理:矩形的四个角都是直角。
8.定理:矩形的对角线相等。
9.推论:直角三角形斜边上的中线等于斜边的一半。
10.定理:菱形的四条边都相等。
11.定理:菱形的对角线互相垂直,并且每条对角线平分一组对角。
12.定理:对角线互相垂直的平行四边形是菱形 其实,在学习之后能自己总结,是可以锻炼自己能力的。
以后最好自己尝试总结。
北师大版九年级数学上册内容总结
北师大版九年级数学上册内容总结平时上课用的,比较正式简洁。
第一章证明(二) (课时安排) 1.你能证明它们吗
3课时 2.直角三角形 2课时 3.线段的垂直平分线 2课时 4.角平分线 1课时 1.你能证明它们吗?(一)教学目标:知识与技能目标: 1.了解作为证明基础的几条公理的内容。
2.掌握证明的基本步骤和书写格式.过程与方法 1.经历“探索——发现——猜想——证明”的过程。
2.能够用综合法证明等区三角形的有关性质定理。
情感态度与价值观 1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系. 2.培养学生合作交流、独立思考的良好学习习惯. 重点、难点、关键 1.重点:探索证明的思路与方法。
能运用综合法证明问题. 2.难点:探究问题的证明思路及方法. 3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.
初二函数的总结(北师大版)
因为a+b=1所以a=b-1又因为y=ax+b将b=1-a得y=ax-a+1 =a(x-1)+1我们知道当X=1时无论a取什么数a(x-1)都是等于0而y=ax-a+1 则等于1所以必经过(1,1)这类题目一般都是这样的先化成y=k(x+b)+c的形式当x=b时 无论k取什么值都没有用的 而此时的y为c



