欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 读后感 > 哥尼斯堡七桥问题读后感

哥尼斯堡七桥问题读后感

时间:2018-12-07 10:43

如何看待哥尼斯堡七桥问题?

1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支-----图论与几何拓扑。

也由此展开了数学史上的新进程。

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。

七桥问题和欧拉定理。

欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理”。

哥尼斯堡七桥问题

濒临蓝色的波罗的海,有一座古老而美丽的城市,叫做哥尼斯堡(今俄罗斯加里宁格勒)。

布勒格尔河的两条支流在这里汇合,然后横贯全城,流入大海。

河心有一个小岛。

河水把城市分成了4块,于是,人们建造了7座各具特色的桥,把哥尼斯堡连成一体。

一天又一天,7座桥上走过了无数的行人。

不知从什么时候起,脚下的桥梁触发了人们的灵感,一个有趣的问题在居民中传开了: 谁能够一次走遍所有的7座桥,而且每座桥都只通过一次

哥尼斯堡七桥问题最后是被谁解决的

哥尼斯堡七桥的解决,与后来数学的图论与几何拓扑有关。

  1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解题的同时,开创了数学的一个新的分—图论与几何拓扑,也由此展开了数学史上的新历程。

七桥问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。

欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理F”。

  四色定理四色猜想、四色问题,是世界三大数学猜想之一。

四色定理是一个著名的数学定理,通俗的说法是:每个平面地图都可以只用四种颜色来染色,而且没有两个邻接的区域颜色相同。

  1976年借助电子机证明了四色问题,问题也终于成为定理,这是第一个借助计算机证明的定理。

四色定理的本质就是在平面或者球面无法构个或者五个以上两两相连的区域。

七桥问题答案

哥尼斯堡七座桥问题是200年前数学家欧拉所研究的问题之一,实际上是一笔画问题。

即,何种曲线可以一笔划成(笔不离纸,而且每一条线只划一次,没有重复)。

哥尼斯堡现名加里宁格勒,城中有一小岛,周围有七座桥架立在波列格尔河上。

欧拉想:在城中散步时,能否每座桥只走一次,走遍所有的七座桥。

这个问题的答案是“不可能”。

因为从某一点出发到某一点划完,中间每经过一点总要有进入线和走出线,所以在交点上如果是偶数,可以一笔划成,如果是奇数线,总有一条线没有划到。

因此七桥问题始终没解。

欧拉指出这一问题相当于把3个区,一个岛看成4个点,而把7座桥堪称7条线,就得到如图所示的情形。

不重复的1次走完7座桥,就是能否一笔划成。

此图形有4个起点,因此。

这个图形无法一笔画成。

也就是说,哥尼斯堡7座桥不能不重复的一次走完。

七桥问题

1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支-----图论与几何拓扑。

也由此展开了数学史上的新进程。

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。

七桥问题和欧拉定理。

欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理”。

希望能够帮助你

学习宝典团队为您解答

七桥问题怎样解

是不是解不出来

那又是为什么呢

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。

而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有7

=5040种,而这么多情况,要一一试验,这将会是很大的工作量。

但怎么才能找到成功走过每座桥而不重复的路线呢

因而形成了著名的“哥尼斯堡七桥问题”。

1735年,有几名大学生写信给当时正在俄罗斯的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。

欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但始终没能成功,于是他怀疑七桥问题是不是原本就无解呢

1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,圆满解决了这一问题,同时开创了数学新一分支---图论。

在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。

并由此得到了如图一样的几何图形。

若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。

这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。

若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。

即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。

同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。

有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。

欧拉著名的“七桥问题”的内容和答案是什么

1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支-----图论与几何拓扑。

也由此展开了数学史上的新进程。

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。

七桥问题和欧拉定理。

欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理”。

七桥问题Seven Bridges Problem18世纪著名古典数学问题之一。

在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。

问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。

18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来(如左图上)。

有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点后来大数学家欧拉把它转化成一个几何问题(如左图下)——一笔画问题。

他不仅解决了此问题,且给出了连通图可以一笔画的重要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2 1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,圆满解决了这一问题,同时开创了数学新一分支---图论。

在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。

并由此得到了如图一样的几何图形。

若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。

这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。

若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由B或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。

即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是5为奇数,于是可知从A出发是无解的。

同时若从B或D出发,由于B、D的度数分别是3、3,都是奇数,即以之为起点都是无解的。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片