欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 烟气脱硫心得体会

烟气脱硫心得体会

时间:2020-03-07 21:41

怎么对煤进行脱硫

石灰石——石膏硫工艺是世界上应用泛的一种脱硫技术本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。

  它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。

经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。

由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。

  旋转喷雾干燥烟气脱硫工艺 喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。

与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。

脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。

脱硫后的烟气经除尘器除尘后排放。

为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。

粉尘含量高为什么会降低脱硫效率

粉尘含量高为什么会降低脱硫效率影响脱硫效率的原因主要有:1、浆液密度;2、供浆量;3、入口SO2浓度;4、供氧量;5、增压风机导叶开度;6、浆液雾化喷淋;7、石灰石品质;8.Mgo 含量;9.空预器漏风率。

补充:影响脱硫效率的因素很多,如吸收温度,进气S02浓度,脱硫剂品质、粒度和用量(钙硫比),浆液pH值,液气比,粉尘浓度等。

以下就其影响因素进行具体分析。

首先是浆液pH值,它可作为提高脱硫效率的调节手段。

据悉,当pH~在4~6之间变化时,CaC03的溶解速率呈线性增加,pH值为6时的速率是pH值为4时的5~10倍。

因此,为了提高S02的俘获率,浆液要尽可能地保持在较高的pH值。

但是高pH值又会增加石灰石的耗量,使得浆液中残余的石灰石增加,影响石膏的品质。

另一方面浆液的pH值又会影响HS03的氧化率,pH值在4~5之间时氧化率较高,pH值为4.5时,亚硫酸盐的氧化作用最强。

随着pH值的继续升高,HS03的氧化率逐渐下降,这将不利于吸收塔中石膏晶体的生成。

在石灰石一石膏法湿法脱硫中,pH值应控制在5.O~5.5之间较适宜。

因此在调节pH值时,必须根据每天的石膏化验结果、实际运行工况及燃煤硫分等进行合理调整,这样才能更好的调节脱硫效率。

其次是钙硫比,据悉,在诸多影响脱硫效率的因素中,钙硫比中90%比对脱硫效率的影响是最大。

但在其他影响因素一定时,钙硫比为1时的湿法烟气脱硫效率可达90%以上。

这是很重的影响因素。

再者是液气比,它是决定脱硫效率的主要参数,液化比越大气相和液相的传质系数提高利于SOz的吸收,但是停留时间减少,削减了传质速率提高对S02吸收有利的强度,因此存在最佳液气比。

这也是影响脱硫效率的因素之一。

当然,石灰石的影响也是存在的。

当出现pH值异常,可能是加入的石灰石成分变化较大引起的。

如果发现石灰石中Ca0质量分数小于50%,应对其纯度系数进行修正。

另外,石灰石中过高的杂质如Si02等虽不参加反应,但会增加循环泵、旋流子等设备的磨损。

所以,石灰石的颗粒度大小会影响其溶解,进而影响脱硫效率。

再者就是温度的影响,进塔烟温越低,越有利于SO。

的吸收,降低烟温,S02平衡分压随之降低,有助于提高吸附剂的脱硫效率。

但进塔烟温过低会使H2SO。

与CaCO。

或Ca(OH)2的反应速率降低,使设备庞大。

所以,温度的适合也是影响脱硫效率的一个重要因素。

影响PH值的还有粉尘的浓度,如果粉尘浓度过高则会影响石灰石的溶解,导致浆液pH值降低,脱硫效率也会随之下降。

所以当出现粉尘浓度过高时,应停用脱硫系统,开启真空皮带机或增大排放废水流量,连续排除浆液中的杂质,这样脱硫效率才能恢复正常。

煤应该怎样脱硫

这种工作总结,你可以去网上的范文网站的,现在谁会给你写一篇能,又没报酬,不现实。

我建议楼主在网上去范文网去找几篇范文,结合自己的实际情况,改改,就差不多了。

顺便给楼主推荐一个不错滴范文网站你百度一下“爱公文网”网站也没有那些烦人的广告。

范文也不错,希望能帮助你,采纳哦

气态污染物的控制技术主要用于哪些污染物的净化

下列7种主要气态污染物的处理技术: 一、粉尘控制技术 1.高压静电除尘技术 将50赫兹、220伏交流电变成100千瓦以上直流电加到电晕极(阴极)形成不均匀高压电场,使气体电离产生大量的负离子和电子,使进入电场的气体粉尘荷电,在电场力的作用下,荷电粉尘趋向相反的电极上,一般阳极为集尘极,依靠振打落入灰斗排出,完成净化除尘过程。

高压静电除尘器高效低阻可广泛用于建材、冶金、化工等行业粉尘污染场合。

它处理粉尘浓度高,对001微米微细或高比电阻粉尘,除尘效果更为明显,系列产品满足不同风量的烘干设备,匹配灵活,适合烘干机废气特性的粉尘治理。

2.旋风除尘技术 工作原理是在风机的作用下,含尘气流由进口以较高的速度沿切线方向进入除尘器蜗壳内,自上而下作螺旋形旋转运动,尘粒在离心力的作用下,被甩向外壁,并沿壁面下旋,随着圆锥体的收缩而转向轴心,受下部阻力而返回,沿轴心由下而上螺形旋转经芯管排出。

外壁的尘粒在重力和向下运动的气流带动下,沿壁面落入灰斗,达到除尘的目的。

由于旋风除尘器是依靠尘粒惯性分离,除尘效率与粒径成正比,粒径大除尘效果好;粒径小,除尘效果差,一般处理20微米以上的粉尘,除尘效率在70%~90%。

3.袋除尘技术 对颗粒0.1微米含尘气体,除尘效率可高达99%,烘干机废气除尘选用袋除尘器不用考虑排放浓度超标问题。

烘干机抗结露玻纤袋除尘器是目前理想的除尘净化设备。

该设备采用微机控制,分室反吹,定时清灰,并装有温度检测显示,超温报警装置,采用CW300—FcA抗结露玻纤滤袋,可有效防止滤袋结露,也不会烧坏滤袋。

4.湿法除尘技术 含尘气体由引风机通过风管送入除尘塔下部,由于断面变大,流速降低,并且粗颗粒粉尘先在气流中沉降,较细粉尘随气流上升,喷淋下来水珠与粉尘气流逆向运动,粉尘被湿润自重不断增加,在重力作用下,克服气流的升力而下降成泥浆水,通过下部管道进入沉淀池,达到除尘的目的。

泥浆水一般经过2~3级循环沉淀变清水,用泵打入除尘塔内循环使用,不造成二次污染。

5.湿法除尘技术 由沉降室和高压静电组成除尘工艺是含尘废气由引风机经风管高速送入沉降室,碰撞到墙壁上,气流走向改变,使风速迅速降低,颗粒粉尘沉降,经输送设备排出,微细粉尘随气流进入高压静电除尘器电场,在离子的连续轰击下而荷电,飞向集尘极被收集后排出,净化后的气体由风管排入大气。

6.旋风+高压静电除尘技术 该除尘技术是烘干机含尘废气由风管进入前级高效旋风除尘器进行预除尘,粉尘由灰斗经排灰设备排出,气流含尘浓度降低,然后进入高压静电除尘器的二级除尘,净化后的气体出风机排入大气,使除尘效率提高,工艺灵活,安全可靠。

二、二氧化硫控制技术 1.抛弃法:将脱硫的生成物作为固体废物抛掉 2.回收法:将SO2转变成有用的物质加以回收 3.湿法脱除SO2技术 1) 石灰石-石膏法脱硫技术 烟气先经热交换器处理后,进入吸收塔,在吸收塔里SO2 直接与石灰浆液接触并被吸收去除。

治理后烟气通过除雾器及热交换器处理后经烟囱排放。

吸收产生的反应液部分循环使用,另一部分进行脱水及进一步处理后制成石膏。

2) 旋流板脱硫除尘技术 针对烟气成份组成的特点,采用碱液吸收法,经过旋流、喷淋、吸收、吸附、氧化、中和、还原等物理、化学过程,经过脱水、除雾,达到脱硫、除尘、除湿、净化烟气的目的。

脱硫剂:石灰液法、双碱法、钠碱法。

4. 半干法脱除SO2技术 喷雾干燥脱硫技术 利用喷雾干燥的原理,在吸收剂(氧化钙或氢氧化钙)用 固定喷头喷入吸收塔后,一方面吸收剂与烟气中发生化学反应,生成固体产物;另一方面烟气将热量传递给吸收剂,使脱硫反应产物形成干粉,反应产物在布袋除尘器(或电除尘器)处被分离,同时进一步去除SO2。

循环流化床烟气脱硫技术 利用流化床原理,将脱硫剂流态化,烟气与脱硫剂在悬浮状态下进行脱硫反应。

5. 干法脱除SO2技术 1) 活性炭吸附法 在有氧及水蒸气存在的条件下,可用活性炭吸附SO2。

由于活性炭表面具有的催化作用,使吸附的SO2被烟气中的氧气氧化为SO3,SO3再和水反应吸收生成硫酸;或用加热的方法使其分解,生成浓度高的SO2,此SO2可用来制酸。

) 催化氧化法 在催化剂的作用下可将SO2氧化为SO3后进行利用。

可用来处理硫酸尾气及有色金属冶炼尾气,技术成熟,已成为制酸工艺的一部分。

但用此法处理电厂锅炉烟气及炼油尾气,则在技术上、经济上还存在一些问题需要解决。

三、氮氧化物处理技术 1.吸附法 利用吸附剂对NOx 的吸附量随温度或压力的变化而变化的原理, 通过周期性地改变反应器内的温度或压力,来控制NOx 的吸附和解吸反应,以达到将NOx 从气源中分离出来的目的。

常用的吸附剂为分子筛、硅胶、活性炭和含氨洗煤。

2.光催化氧化法 利用TiO2 半导体的光催化效应脱除NOx 的机理是: TiO2受到超过其带隙能以上的光辐射照射时,价带上的电子被激发,超过禁带进入导带,同时在价带上产生相应的空穴。

电子与空穴迁移到粒子表面的不同位置,空穴本身具有很强的得电子能力,可夺取NOx 体系中的电子,使其被活化而氧化。

电子与水及空气中的氧反应生成氧化能力更强的·OH及O-2 等,是将NOx 最终氧化生成NO-3 的最主要氧化剂。

3.液体吸收法 水吸收、酸吸收(如浓硫酸、稀硝酸) 、碱液吸收(如氢氧化钠、氢氧化钾、氢氧化镁)和熔融金属盐吸收。

还有氧化吸收法、吸收还原法及络合吸收法等对以一氧化氮为主的氮氧化物,可先进行氧化,将废气的氧化度提高到l~1. 3后,再进行吸收。

4.吸收还原法 用亚硫酸盐、硫化物、硫代硫酸盐、尿素等水溶液吸收氮氧化物,并使其还原为N2亚硫酸铵具有较强的还原能力,可将NOx还原为无害的氮气,而亚硫酸铵则被氧化成硫酸铵,可作化肥使用。

5.生物法 微生物净化氮氧化物有硝化和反硝化两种机理,适宜的脱氮菌在有外加碳源的情况下,利用氮氧化物为氮源,将氮氧化物同化合成为有机氮化合物,成为菌体的一部分(合成代谢) ,脱氮菌本身获得生长繁殖;而异化反硝化作用(分解代谢)则将NOx 最终还原成氮。

四、挥发性有机污染物控制技术 1.吸收法 利用某一VOC易溶于特殊的溶剂(或添加化学药剂的溶液)的特性进行处理,这个过程通常都在装有填料的吸收塔中完成。

2.冷凝法对于高浓度VOC,可以使其通过冷凝器,气态的VOC降低到沸点以下,凝结成液滴,再靠重力作用落到凝结区下部的贮罐中,从贮罐中抽出液态VOC,就可以回收再利用。

3.吸附法 利用某些具有从气相混合物中有选择地吸附某些组分能力的多孔性固体(吸附剂)来去除VOC的一种方法。

目前用以处理VOC最常用的吸附剂有活性炭和活性碳纤维,所用的装置为阀门切换式两床(或多床)吸附器。

4.生物法 利用微生物分解VOC,一般用于处理低浓度VOC。

5.等离子体法 通过陡前沿、窄脉宽(ns级)的高压脉冲电晕放电,在常温常压下获得非平衡等离子体,即产生大量的高能电子和O・、OH・等活性粒子,对VOCs分子进行氧化、降解反应,使VOCs最终转化为无害物。

6.氧化法 对于有毒、有害、不须回收的VOC,热氧化法是一种较彻底的处理方法。

它的基本原理是VOC与O2发生氧化反应,生成CO2和H20,化学方程式如下:aCxHyOz+bO2→cCO2+dH2O 一般通过以下两种方法使氧化反应能够顺利进行:一是加热,使含VOC的废气达到氧化反应所需的温度;二是使用催化剂,氧化反应在较低的温度下在催化剂表面进行。

五、恶臭控制技术 1.微生物分解法 利用循环水流将恶臭气体中污染物质容于水中,再由水中培养床培养出微生物,将水中的污染物质降解为低害物质,除臭效率可达70%,但受微生物活性影响,培养出来的微生物只能处理一种或几种相近性质的气体,为提高处理效率和稳定运行,必须频繁添加药剂、控制PH值、温度等,这样运行费用相对比较高,投入人工也比较多,而且生物一旦死亡将需要较长时间重新培养. 2.等离子法 利用活性炭内部空隙结构发达,有巨大比表面积原理来吸附通过活性炭池的恶臭气体分子,初期处理效率可达65%,但极易饱和,通常数日即失效,需要经常更换,并需要寻找废弃活性碳的处理办法,运行维护成本很高,适用于低浓度、大风量气体,对醇类、脂肪类效果较明显,但湿度大的废气效果不明显,且容易造成环境二次污染。

3.等离子法 利用高压电极发射离子及电子,破坏恶臭分子结构的原理,轰击废气中恶臭分子,从而裂解恶臭分子,对低浓度的恶臭气体净化效果明显,在正常运行情况下可达到80%以上,能处理多种臭气充分组成的混合气体,不受湿度的影响,且无二次污染;但用电量大,且还需要清灰,运行维护成本高,对高浓度易燃易爆气体极易引起爆炸。

4.植物喷洒液除臭法 通过向产生恶臭气体的空间喷洒植物提取液将恶臭气体进行中和、吸收,达到脱臭的目的,除臭效果低浓度可达到50%,不同的臭气选择不同的喷洒液,需经常添加植物喷洒液,且需维护设备,运行维护费用高,易造成二次污染。

5.UV光解净化法 采用高能UV紫外线,在光解净化设备内,裂解氧化恶臭物质分子链,改变物质结构,将高分子污染物质裂解、氧化为低分子无害物质,其脱臭效率可99%,脱臭效果大大超过国家1993年颁布的恶臭物质排放标准(GB14554-93),能处理氨、硫化氢、甲硫醇、甲硫醚、苯、苯乙烯、二硫化碳、三甲胺、二甲基二硫醚等高浓度混合气体,内部光源可使用三年,设备寿命在十年以上,净化技术可靠且非常稳定,净化设备无须日常维护,只需接通电源即可正常使用,且运行成本低,无二次污染。

六、卤化物气体控制技术 1.首先考虑其回收利用价值。

如氯化氢气体可回收制盐酸, 含氟废气能生产无机氟化物和白炭黑等。

2.吸收和吸附等物理化学方法在资源回收利用和卤化物深度处理上工艺技术相对成熟, 优先使用物理化学类方法处理卤化物气体。

3.碱液吸收含氯或氯化氢(盐酸酸雾)废气;水、碱液或硅酸钠,吸收含氟废气;石灰水洗涤低浓度氟化氢废气;水吸收氟化氢生成氢氟酸,同时有硅胶生成,应注意随时清理,防止系统堵塞。

4.电解铝行业治理含氟废气宜采用氧化铝粉吸附法。

技术要求 1) 治理设备应特别考虑卤化物对金属的腐蚀特点,选择合适的防腐材料。

7.5.4.2 用水吸收含氟废气宜采用多级吸收,吸收装置宜采用文丘里洗涤器、喷射式洗涤器等,也可采用湍球塔、空塔等。

2) 用吸收法处理含氯、氯化氢废气时宜采用湍球塔、喷淋塔或填料塔,设备材料宜采用聚氯乙烯、橡胶衬里或玻璃鳞片树脂衬里。

用氢氧化钠作吸收剂时,应注意降温并保持较高的pH 值。

3) 采用氧化铝粉吸附法治理含氟废气的主要工艺要求如下: a) 输送床净化工艺:输送床(管道)内流速一般为15 m\\\/s ~18m\\\/s,排出气体经除尘器净化达标后排空,吸附饱的氧化铝送往电解槽炼铝; b) 沸腾床(流化床)净化工艺:沸腾床层上氧化铝的静止高度可为30 mm ~ 40mm,床内气体流速约为0.28m\\\/s,净化后的气流经除尘器净化达标后排空,吸附饱 和的氧化铝送电解槽炼铝。

七、含重金属气体控制技术 1.从机理方面控制 (1)尽可能阻止(或减少)金属颗粒的形成。

如在燃烧中通过改变金属化合物的形式来改变金属饱和压力,使它在尾部烟道中尽量按我们想要的方式冷凝下来; (2)减少排出炉膛的金属颗粒数量。

这样,进入大气的重金属元素必然会减少,如采用高效除尘设备。

2.从设备处于燃烧前后的位置来控制 (1)燃烧前预处理 主要指煤炭加工技术,包括选煤、动力配煤、型煤、水煤浆等,这些技 术一般通过提高煤燃烧效率,减少烟气的排放量来达到降低重金属污染的目的。

采用先进的 洗选技术可使煤中重金属元素含量明显降低。

1)浮选法 重金属元素与其他矿物质类似,主要存在于无机物中,当在煤粉浆液中加入有机浮选剂进行浮选时,有机物主要成为浮选物,无机矿物质则主要成为浮选矿渣,这样,重金属元素将会富集在浮选废渣中,从而起到除去煤中重金属的目的。

2)化学脱硫 煤中重金属元素相当一部分存在于硫化物、硫酸盐中,如As、Co、Hg、Se、Pb、Cr、Cd等元素就主要存在于硫酸盐中。

如果采用一定的化学方法脱去原煤中的硫酸盐与硫化物,也就相应除去了存在于其中的重金属元素。

燃烧中控制 改变燃烧工况和添加固体吸附剂。

由于重金属在高温下易挥发,且挥发率随温度升高而升高。

挥发后的重金属会在烟道下游发生凝结、非均相冷凝、均相结核等物理化学变化,形成亚微米颗粒继而增加排放到大气中的重金属量。

目前,燃烧中控制重金属排放的技术主要有以下几种: 1)流化床燃烧技术 2)织物(布袋)过滤技术 3)吸附剂吸附技术 燃烧后控制 1)高效除尘 2)湿法烟气脱硫 在烟气处理装置中加凝固剂 对于Hg的处理,由于它在烟气中主要以气态存在,可以在烟气处理装置中加入凝固剂,如Na2S和NaClO3等,来减少气态Hg的存在。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片