
常用仪器使用及实验基本操作的实验报告
一、实验目的 1、学习电子技术实验中常用电子仪器的主要技术指标、性能和正确使用方法。
2、初步掌握用示波器观察正弦信号波形和读取波形参数的方法。
电路实验箱的结构、基本功能和使用方法。
二、实验原理 在模拟电子电路实验中,要对各种电子仪器进行综合使用,可按照信号流向,以接线简捷,调节顺手,观察与读数方便等原则进行合理布局。
接线时应注意,为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。
1. 信号发生器 信号发生器可以根据需要输出正弦波、方波、三角波三种信号波形。
输出信号电压频率可以通过频率分挡开关、频率粗调和细调旋钮进行调节。
输出信号电压幅度可由输出幅度调节旋钮进行连续调节。
操作要领: 1)按下电源开关。
2)根据需要选定一个波形输出开关按下。
3)根据所需频率,选择频率范围(选定一个频率分挡开关按下)、分别调节频率粗调和细调旋钮,在频率显示屏上显示所需频率即可。
4)调节幅度调节旋钮,用交流毫伏表测出所需信号电压值。
注意:信号发生器的输出端不允许短路。
2. 交流毫伏表 交流毫伏表只能在其工作频率范围内,用来测量300伏以下正弦交流电压的有效值。
操作要领: 1) 为了防止过载损坏仪表,在开机前和测量前(即在输入端开路情况下)应先将 量程开关置于较大量程处,待输入端接入电路开始测量时,再逐档减小量程到适当位置。
2) 读数:当量程开关旋到左边首位数为“1”的任一挡位时,应读取0~10标度尺 上的示数。
当量程开关旋到左边首位数为“3”的任一挡位时,应读取0~3标度尺上的示数。
3)仪表使用完后,先将量程开关置于较大量程位置后,才能拆线或关机。
3.双踪示波器 示波器是用来观察和测量信号的波形及参数的设备。
双踪示波器可以同时对两个输入信号进行观测和比较。
操作要领: 1) 时基线位置的调节 开机数秒钟后,适当调节垂直(↑↓)和水平(←→)位 移旋钮,将时基线移至适当的位置。
2) 清晰度的调节 适当调节亮度和聚焦旋钮,使时基线越细越好(亮度不能太亮, 一般能看清楚即可)。
3) 示波器的显示方式 示波器主要有单踪和双踪两种显示方式,属单踪显示的有“Y1”、“Y2”、“Y1+Y2”,作单踪显示时,可选择“Y1”或“Y2”其中一个按钮按下。
属双踪显示的有“交替”和“断续”,作双踪显示时,为了在一次扫描过程中同时显示两个波形,采用“交替”显示方式,当被观察信号频率很低时(几十赫兹以下),可采用“断续”显示方式。
4) 波形的稳定 为了显示稳定的波形,应注意示波器面板上控制按钮的位置:a) “扫描速率”(t\\\/div)开关------根据被观察信号的周期而定(一般信号频率低时,开关应向左旋。
反之向右旋)。
b)“触发源选择”开关------选内触发。
c)“内触发源选择”开关------应根据示波器的显示方式来定,当显示方式为单踪时,应选择相应通道(如使用Y1通道应选择Y1内触发源)的内触发源开关按下。
当显示方式为双踪时,可适当选择三个内触发源中的一个开关按下。
d)“触发方式”开关------常置于“自动”位置。
当波形稳定情况较差时,再置于“高频”或“常态”位置,此时必须要调节电平旋钮来稳定波形。
5)在测量波形的幅值和周期时,应分别将Y轴灵敏度“微调”旋钮和扫描速率“微 调”旋钮置于“校准”位置(顺时针旋到底)。
三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、万用表 四、实验内容 1.示波器内的校准信号 用机内校准信号(方波:f=1KHz VP—P=1V)对示波器进行自检。
1) 输入并调出校准信号波形 ①校准信号输出端通过专用电缆与Y1(或Y2)输入通道接通,根据实验原理中有关示波器的描述,正确设置和调节示波器各控制按钮、有关旋钮,将校准信号波形显示在荧光屏上。
②分别将触发方式开关置“高频”和“常态”位置,然后调节电平旋钮,使波形稳定。
2) 校准“校准信号”幅度 将Y轴灵敏度“微调”旋钮置“校准”位置(即顺时针旋到底),Y轴灵敏度开关置适当位置,读取信号幅度,记入表1—1中。
3)校准“校准信号”频率 将扫速“微调”旋钮置“校准”位置,扫速开关置适当位置,读取校准信号周期,记入表1—1中。
2. 示波器和毫伏表测量信号参数 令信号发生器输出频率分别为500Hz、1KHz、5KHz,10KHz,有效值均为1V(交流毫伏表测量值)的正弦波信号。
调节示波器扫速开关和Y轴灵敏度开关,测量信号源输出电压周期及峰峰值,计算信号频率及有效值,记入表1—2中。
3.交流电压、直流电压及电阻的测量 1) 打开模拟电路实验箱的箱盖,熟悉实验箱的结构、功能和使用方法。
2) 将万用表水平放置,使用前应检查指针是否在标尺的起点上,如果偏移了,可调节 “机械调零”,使它回到标尺的起点上。
测量时注意量程选择应尽可能接近于被测之量,但不能小于被测之量。
测电阻时每换一次量程,必须要重新电气调零。
3) 用交流电压档测量实验箱上的交流电源电压6V、10V、14V;用直流电压档测量实 验箱上的直流电源电压±5V、±12V;用电阻档测量实验箱上的10Ω、1KΩ、10KΩ、100KΩ电阻器,将测量结果记入自拟表格中。
c语言实验报告心得
c语言实验心得:1、只有频繁用到或对运算速度要求很高的变量才放到data区内,如for循环中的计数值。
2、其他不频繁调用到和对运算速度要求不高的变量都放到xdata区。
3、常量放到code区,如字库、修正系数。
4、逻辑标志变量可以定义到bdata中。
在51系列芯片中有16个字节位寻址区bdata,其中可以定义8*16=128个逻辑变量。
这样可以大大降低内存占用空间。
定义方法是: bdata bit LedState;但位类型不能用在数组和结构体中。
5、data区内最好放局部变量。
因为局部变量的空间是可以覆盖的(某个函数的局部变量空间在退出该函数是就释放,由别的函数的局部变量覆盖),可以提高内存利用率。
当然静态局部变量除外,其内存使用方式与全局变量相同;6、确保程序中没有未调用的函数。
在Keil C里遇到未调用函数,编译器就将其认为可能是中断函数。
函数里用的局部变量的空间是不释放,也就是同全局变量一样处理。
这一点Keil做得很愚蠢,但也没办法。
7、如果想节省data空间就必须用large模式。
将未定义内存位置的变量全放到xdata区。
当然最好对所有变量都要指定内存类型。
8、使用指针时,要指定指针指向的内存类型。
在C51中未定义指向内存类型的通用指针占用3个字节;而指定指向data区的指针只占1个字节;指定指向xdata区的指针占2个字节。
如指针p是指向data区,则应定义为: char data *p;。
还可指定指针本身的存放内存类型,如:char data * xdata p;。
其含义是指针p指向data区变量,而其本身存放在xdata区。
以前没搞过C51,大学时代跟单片机老师的时候也是捣鼓下汇编,现在重新搞单片机,因为手头资料不多,找到一些C51的程序,发现里面有这些关键字,不甚明了,没办法只好找了下,发现如下描述:从数据存储类型来说,8051系列有片内、片外程序存储器,片内、片外数据存储器,片内程序存储器还分直接寻址区和间接寻址类型,分别对应code、data、xdata、idata以及根据51系列特点而设定的pdata类型,使用不同的存储器,将使程序执行效率不同,在编写C51程序时,最好指定变量的存储类型,这样将有利于提高程序执行效率(此问题将在后面专门讲述)。
与ANSI-C稍有不同,它只分SAMLL、COMPACT、LARGE模式,各种不同的模式对应不同的实际硬件系统,也将有不同的编译结果。
在51系列中data,idata,xdata,pdata的区别data:固定指前面0x00-0x7f的128个RAM,可以用acc直接读写的,速度最快,生成的代码也最小。
idata:固定指前面0x00-0xff的256个RAM,其中前128和data的128完全相同,只是因为访问的方式不同。
idata是用类似C中的指针方式访问的。
汇编中的语句为:mox ACC,@Rx.(不重要的补充:c中idata做指针式的访问效果很好) xdata:外部扩展RAM,一般指外部0x0000-0xffff空间,用DPTR访问。
pdata:外部扩展RAM的低256个字节,地址出现在A0-A7的上时读写,用movx ACC,@Rx读写。
这个比较特殊,而且C51好象有对此BUG,建议少用。
但也有他的优点,具体用法属于中级问题,这里不提。
三、有关单片机ALE引脚的问题 单片机不访问外部锁存器时ALE端有正脉冲信号输出,此频率约为时钟振荡频率的1\\\/6.每当访问外部数据存储器是,在两个机器周期中ALE只出现一次,即丢失一个ALE脉冲.这句话是不是有毛病.我觉得按这种说法,应该丢失3个ALE脉冲才对,我一直想不通是怎么回事,希望大虾们帮帮我.小弟感激涕零.答:其他所有指令每6个机器周期发出一个ALE,而MOVX指令占用12个机器周期只发出一个ALE 四、如何将一个INT型数据转换成2个CHAR型数据
经keil优化后,char1=int1\\\/256,char2=int1%256或char1=int1>>8,char2=int1&0x00ff效率是一样的。
五、在KEIL C51上仿真完了,怎样生成HEX文件去烧写
右键点项目中Target 1,选第二个,在OUTPUT中选中CREAT HEX 六、typedef 和 #define 有何不同?? typedef 和 #define 有何不同》》》 如typedef unsigned char UCHAR ;#define unsigned char UCHAR ;typedef命名一个新的数据类型,但实际上这个新的数据类型是已经存在的,只不过是定义了一个新的名字.#define只是一个标号的定义.你举的例子两者没有区别,但是#define还可以这样用#define MAX 100#define FUN(x) 100-(x)#define LABEL等等,这些情况下是不能用typedef定义的 七、请问如何设定KELC51的仿真工作频(时钟) 用右键点击左边的的target 1,然后在xtal一栏输入 八、不同模块怎样共享sbit变量,extern不行? 把SBIT定义单独放到一个.H中,每个模块都包含这个.h文件 九、C51中对于Px.x的访问必须自己定义吗
是的。
如sbit P17 = 0x97;即可定义对P1.7的访问 十、SWITCH( )语句中表达式不可以是位变量对吗
可以用位变量:#include#includevoid main(){bit flag;flag=0;switch(flag){case '0':{printf(0\\\ );break;}case '1':{printf(1\\\ );break;}default:break; }}bit 变量只有两种状态,if 语句足够啦,!!! 十一、const常数声明占不占内存 const 只是用来定义“常量”,所占用空间与你的定义有关,如:const code cstStr[] = {abc};占用代码空间;而如:const char data cstStr[] = {abc};当然占用内存空间。
另外,#define 之定义似乎不占用空间。
十二、philips的单片机P89C51RD+的扩展RAM在C51中如何使用
试一试将auxr.1清0,然后在c语言中直接声明xdata类型的变量 十三、BUG of Keil C51 程序中用如下语句:const unsigned char strArr[] = {数学};结果发现strArr[] 内容为 {0xCA,0xD1,0xA7},真奇怪
凡是有0xfd,则会通通不见了,所以只能手工输入内码了,例如 uchar strArr[]={0xCA,0xfd,0xd1,0xa7}(用Ultraedit会很方便)。
十四、Keil C51中如何实现代码优化
菜单Project下Option for target Simulator的C51.看到Code optimization了吗
十五、请教c的
和 ~ 符号有甚区别
是逻辑取反,~是按位取反。
十六、c51编程,读端口,还要不要先输出1
我怎么看到有的要,有的不要,请高手给讲讲,到底咋回事
谢了要输出1的,除非你能保证之前已经是1,而中间没有输出过其他值。
十七、当定时器1(T1)用于产生波特率时,P3^5还是否可以用作正常的I\\\/O口呢
p3.5完全可以当普通的io使用 十八、C51中 INT 转换为 2个CHAR
各位高手:C51中 INT 转换为 CHAR 如何转换诸如:X = LOW(Z);Y = HIGH(Z);答: x=(char)z;y=(char)(z>>8); 十九、如果我想使2EH的第7位置1的话,用位操作可以吗
现在对位操作指令我一些不太明白请各位多多指教:如 SETB 07H 表示的是20H.7置1,对吗
(我在一本书上是这么看到的)那么如果我想使2EH的第7位置1的话,象我举的这个例子怎么表示呢
谢谢
SETB 77Hsetb (2eh-20h)*8+7 20h-2fh每字节有8个可位操作(00h-7fh),其它RAM不可位直接操作 二十、char *addr=0xc000 和char xdata *addr=0xc000有何区别
char *addr=0xc000;char xdata *addr=0xc000;除了在内存中占用的字节不同外,还有别的区别吗?char *addr=0xc000; 是通用定义,指针变量 addr 可指向任何内存空间的值;char xdata *addr=0xc000; 指定该指针变量只能指向 xdata 中的值;后一种定义中该指针变量(addr)将少占用一个存储字节。
uchar xdata *addr=0xc000;指针指向外ram;如果:data uchar xdata *addr=0xc000;指针指向外ram但指针本身存在于内ram(data)中以此类推可以idata uchar xdata *addr=0xc000;pdata uchar xdata *addr=0xc000;data uchar idata *addr=0xa0;......... 二十一、while(p1_0)的执行时间
假设,P1_0为单片机P1口的第一脚,请问,while(P1_0){P1_0=0;}while(!P1_0){P1_0=1;}以上代码,在KEIL C中,需要多长时间,执行完。
能具体说明while(P1_0)的执行时间吗
仿真运行看看就知道了,我仿真了试了一下,约14个周期 二十二、怎样编写C51的watchdog程序
各位大虾,我用KEIL C51 编写了一个带外部开门狗的程序,可程序无法运行起来,经过查找,发现程序在经过C51编译后,在MAIN()函数的前部增加了一端初始化程序,等到进入主程序设置开门狗时,开门狗已经时间到,将我的程序复位了,请问我怎样才能修改这一端初始花程序,使他一运行,就设置开门狗
可以在startup.a51中加入看门狗刷新指令,当然用汇编,然后重新编译startup.a51,将他和你的程序连接即可。
新的startup.a51会自动代替系统默认的启动模块。
二十三、keil C51 怎样把修改的startup.a51 加到工程文件中 直接加入即可注意不要改动?STACK,?C_START,?C_STARTUP等符号。
startup.a51直接加入项目,不用修改也可。
可在内面自己修改汇编的一些限制或堆栈指针。
二十四、关于波特率的设置 我在设定串口波特率时发现一个问题:在晶体震荡器为11.0592MHz时,若设9600BPS的话,TH1=0XFD,TL1=0XFD,而要设19200BPS的话,TH1、TL1有否变化,如果没变,为什么
如果变了,又为什么
(因为我看书上俩个是一样的),希望大家点拨。
答:当电源控制寄存器(PCON)第BIT7(SMOD)为1时波特率加倍。
TH1和TL1的值不变. 二十五、如何在C中声明保留这部分RAM区不被C使用
我不知道在C源程序中怎么控制这个,但在汇编程序中加入下面一段就行:DSEG AT 20HAA: DS 10这样C51就不会占用20H--29H了或者在c51里这样定义:uchar data asm_buff[10] _at_ 0x20; 二十六、问浮点运算问题 我在用C51时发现它对传递浮点参数的个数有限制,请问:1)参数是以全局变量的形式传递的,请问以全局变量的形式传递的参数也有限制吗
2)这种传递浮点参数的限制有多少呢
3)float*float的结果是float类型还是double类型?能否直接赋值给float类型的变量
答:由于KEIL C51的参数传递是通过R0-R7来传递的,所以会有限制。
不过KEIL提供了一个编译参数,可以支持更多参数的传递。
具体的内容见KEIL的PDF文档。
我建议你把多个要传递的参数定义到指针或结构体中去,传递参数通过指针或结构进行,这样好一些。
第3个问题回答是YES,你自己试试不就知道了。
二十七、如何在某一个地址定义ram 用_at_ 命令,这样可以定位灵活一点的地址uchar xdata dis_buff[16] _at_ 0x6020 ;\\\/\\\/定位RAM将dis_buff[16]定位在0x6020开始的16个字节 二十八、keil c中,用什么函数可以得到奇偶校验位
例如32位数据,将四个字节相互异或后检查P即可,若耽心P被改变,可用内嵌汇编。
#include unsigned char parity(unsigned char x){x^=x;if(P)return(1);else return(0);}unsigned char parity2(unsigned int x){#pragma asmmov a,r7xrl ar6,a#pragma endasmif(P)return(1);else return(0);}
电路与电子技术学习心得或体会
第一部分:硬件一、 数字信号1、 TTL和带的TTL信号 (1、输出高电>2.4V,输出低电平<0.4V。
在下,一般输出高电平是3.5V,输出低电平是0.2V。
最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
2,CMOS电平: 1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
而且具有很宽的噪声容限。
3,电平转换电路: 因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈 4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较: 1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应: COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。
这种效应就是锁定效应。
当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
6,COMS电路的使用注意事项 1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。
所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。
2)输入端接低内组的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。
3)当接长信号传输线时,在COMS电路端接匹配电阻。
4)当输入端接大电容时,应该在输入端和电容间接保护电阻。
电阻值为R=V0\\\/1mA.V0是外界电容上的电压。
5)COMS的输入电流超过1mA,就有可能烧坏COMS。
7,TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理): 1)悬空时相当于输入端接高电平。
因为这时可以看作是输入端接一个无穷大的电阻。
2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。
因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。
这个一定要注意。
COMS门电路就不用考虑这些了。
8,TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。
OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢
那是因为当三机管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。
而这个就是漏电流。
开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。
它可以吸收很大的电流,但是不能向外输出的电流。
所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。
OD门一般作为输出缓冲\\\/驱动器、电平转换器以及满足吸收大负载电流的需要。
9,什么叫做图腾柱,它与开漏电路有什么区别
TTL集成电路中,输出有接上拉三极管的输出叫做图腾柱输出,没有的叫做OC门。
因为TTL就是一个三级关,图腾柱也就是两个三级管推挽相连。
所以推挽就是图腾。
一般图腾式输出,高电平400UA,低电平8MA)2、 RS232和定义 一、RS-232-C RS-232C标准(协议)的全称是EIA-RS-232C标准,其中EIA(Electronic Industry Association)代表美国电子工业协会,RS(recommeded standard)代表推荐标准,232是标识号,C代表RS232的最新一次修改(1969),在这之前,有RS232B、RS232A。
。
它规定连接电缆和机械、电气特性、信号功能及传送过程。
常用物理标准还有有EIA�RS-232-C、EIA�RS-422-A、EIA�RS-423A、EIA�RS-485。
这里只介绍EIA�RS-232-C(简称232,RS232)。
例如,目前在IBM PC机上的COM1、COM2接口,就是RS-232C接口。
1.电气特性 EIA-RS-232C对电器特性、逻辑电平和各种信号线功能都作了规定。
在TxD和RxD上:逻辑1(MARK)=-3V~-15V 逻辑0(SPACE)=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V 以上规定说明了RS-323C标准对逻辑电平的定义。
对于数据(信息码):逻辑“1”(传号)的电平低于-3V,逻辑“0”(空号)的电平高于+3V;对于控制信号;接通状态(ON)即信号有效的电平高于+3V,断开状态(OFF)即信号无效的电平低于-3V,也就是当传输电平的绝对值大于3V时,电路可以有效地检查出来,介于-3~+3V之间的电压无意义,低于-15V或高于+15V的电压也认为无意义,因此,实际工作时,应保证电平在±(3~15)V之间。
EIA-RS-232C与TTL转换:EIA-RS-232C是用正负电压来表示逻辑状态,与TTL以高低电平表示逻辑状态的规定不同。
因此,为了能够同计算机接口或终端的TTL器件连接,必须在EIA-RS-232C与TTL电路之间进行电平和逻辑关系的变换。
实现这种变换的方法可用分立元件,也可用集成电路芯片。
目前较为广泛地使用集成电路转换器件,如MC1488、SN75150芯片可完成TTL电平到EIA电平的转换,而MC1489、SN75154可实现EIA电平到TTL电平的转换。
MAX232芯片可完成TTL←→EIA双向电平转换。
3、 RS485\\\/422(平衡信号)RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。
RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上最多可以挂接32个结点。
在RS485通信网络中一般采用的是主从通信方式,即一个主机带多个从机。
很多情况下,连接RS-485通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。
而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,这有二个原因:(1)共模干扰问题: RS-485接口采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。
但人们往往忽视了收发器有一定的共模电压范围,RS-485收发器共模电压范围为-7~+12V,只有满足上述条件,整个网络才能正常工作。
当网络线路中共模电压超出此范围时就会影响通信的稳定可靠,甚至损坏接口。
(2)EMI问题:发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),就会以辐射的形式返回源端,整个总线就会像一个巨大的天线向外辐射电磁波。
由于PC机默认的只带有RS232接口,有两种方法可以得到PC上位机的RS485电路:(1)通过RS232\\\/RS485转换电路将PC机串口RS232信号转换成RS485信号,对于情况比较复杂的工业环境最好是选用防浪涌带隔离珊的产品。
(2)通过PCI多串口卡,可以直接选用输出信号为RS485类型的扩展卡。
RS-422标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。
实际上还有一根信号地线,共5根线。
由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。
即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS-422支持点对多的双向通信。
接收器输入阻抗为4k,故发端最大负载能力是10×4k+100Ω(终接电阻)。
RS-422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON\\\/XOFF握手)或硬件方式(一对单独的双绞线)。
RS-422的最大传输距离为4000英尺(约1219米),最大传输速率为10Mb\\\/s。
其平衡双绞线的长度与传输速率成反比,在 100kb\\\/s速率以下,才可能达到最大传输距离。
只有在很短的距离下才能获得最高速率传输。
一般100米长的双绞线上所能获得的最大传输速率仅为 1Mb\\\/s。
RS-422需要一终接电阻,要求其阻值约等于传输电缆的特性阻抗。
在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。
终接电阻接在传输电缆的最远端。
4、 干接点信号二、 模拟信号视频1、 非平衡信号2、 平衡信号三、 芯片1、 封装2、 74073、 74044、 74005、 74LS5736、 ULN20037、 74LS2448、 74LS2409、 74LS24510、 74LS138\\\/23811、 CPLD(EPM7128)12、 116113、 max69114、 max485\\\/7517615、 mc148916、 mc148817、 ICL232\\\/max23218、 89C51四、 分立器件1、 封装2、 电阻:功耗和容值3、 电容1) 独石电容2) 瓷片电容3) 电解电容4、 电感5、 电源转换模块6、 接线端子7、 LED发光管8、 8字(共阳和共阴)9、 三极管2N555110、 蜂鸣器五、 单片机最小系统1、 单片机2、 看门狗和上电复位电路3、 晶振和瓷片电容六、 串行接口芯片1、 eeprom2、 串行I\\\/O接口芯片3、 串行AD、DA4、 串行LED驱动、max7129七、 电源设计1、 开关电源:器件的选择2、 线性电源:1) 变压器2) 桥3) 电解电容3、 电源的保护1) 桥的保护2) 单二极管保护八、 维修1、 电源2、 看门狗3、 信号九、 设计思路1、 电源:电压和电流2、 接口:串口、开关量输入、开关量输出3、 开关量信号输出调理1) TTL―>继电器2) TTL―>继电器(反向逻辑)3) TTL―>固态继电器4) TTL―>LED(8字)5) 继电器―>继电器6) 继电器―>固态继电器4、 开关量信号输入调理1) 干接点―>光耦 2) TTL―>光耦5、 CPU处理能力的考虑6、 成为产品的考虑:1) 电路板外形:大小尺寸、异形、连接器、空间体积2) 电路板模块化设计3) 成本分析4) 器件的冗余度1. 电阻的功耗2. 电容的耐压值等5) 机箱6) 电源的选择7) 模块化设计8) 成本核算1. 如何计算电路板的成本
2. 如何降低成本
选用功能满足价格便宜的器件十、 思考题1、 如何检测和指示RS422信号2、 如何检测和指示RS232信号3、 设计一个4位8字的显示板1) 电源:DC122) 接口:RS2323) 4位3”8字(连在一起)4) 亮度检测5) 二级调光4、 设计一个33位1”8字的显示板1) 电源:DC5V2) 接口:RS2323) 3排 11位8字,分4个、3个、4个3组,带行与行之间带间隔4) 单片机最小系统5) 译码逻辑6) 显示驱动和驱动器件5、 设计一个PCL725和MOXA C168P的接口板1) 电源:DC5V2) 接口:PCL725\\\/MOXA 8个RS2321. PCL725,直立DB37,孔2. MOXA C168P,DB62弯3) 开关量输出信号调理:6个固态继电器和8个继电器,可以被任何一路信号控制和驱动,接口:固态继电器5.08直立,继电器3.81直立4) 开关量输入调理:干接点闭合为1或0可选,接口:3.81直立5) RS232调理:1. LED指示2. 前4路RS232全信号,后4路只需要TX、RX、03. 无需光电隔离4. 接口形式:DB9(针)直立第二部分:软件知识一、 汇编语言二、 C51该部分可以从市场上买到的N种开发板上学到,至于第一部分,需要人来带吧。
为什么要掌握这些知识
实际上,电子工程师就是将一堆器件搭在一起,注入思想(程序),完成原来的这些器件分离时无法完成的功能,做成一个成品。
所需要的技能越高、功能越复杂、成本越低、市场上对相应的东东的需求越大,就越成功。
这就是电子工程师的自身的价值。
从成本到产品售出,之间的差价就是企业的追求。
作为企业的老板,是在市场上去寻找这样的应用;对电子工程师而言,是将老板提出的需求或者应用按照一定的构思原则(成本最低、可靠性最高、电路板最小、功能最强大等)在最短的时间内完成。
最短的时间,跟电子工程师的熟练程度、工作效率和工作时间直接有关。
这就是电子工程师的价值。
将电子产品抽象成一个硬件的模型,大约有以下组成: 1) 输入 2) 处理核心 3) 输出 输入基本上有以下的可能: 1) 键盘2) 串行接口(RS232\\\/485\\\/can bus\\\/以太网\\\/USB) 3) 开关量(TTL,电流环路,干接点) 4) 模拟量(4~20ma、 0~10ma、0~5V(平衡和非平衡信号)) 输出基本上有以下组成: 1) 串行接口(RS232\\\/485\\\/can bus\\\/以太网\\\/USB) 2) 开关量(TTL、电流环路、干接点、功率驱动) 3) 模拟量(4~20ma, 0~10ma,0~5V(平衡和非平衡信号)) 4) LED显示:发光管、八字 5) 液晶显示器 6) 蜂鸣器 处理核心主要有: 1) 8位单片机,主要就是51系列 2) 32位arm单片机,主要有atmel和三星系列 51系列单片机现在看来,只能做一些简单的应用,说白了,这个芯片也就是做单一的一件事情,做多了,不如使用arm来做;还可以在arm上加一个操作系统,程序既可靠又容易编写。
最近三星的arm受到追捧,价格便宜,以太网和USB的接口也有,周立功的开发系统也便宜,作为学习ARM的产品来说,应该是最好的;作为工业级的控制,是不是合适,在网友中有不同的看法和争议。
本公司使用atmel ARM91系列开发的1个室外使用的产品,在北京室外使用,没有任何的通风和加热的措施,从去年的5月份到现在,运行情况良好。
已经有个成功应用的案例。
但对于初学者来说,应该从51着手,一方面,51还是入门级的芯片,作为初学者练还是比较好的,可以将以上的概念走一遍;很多特殊的单片机也是在51的核的基础上增加了一些I\\\/O和A\\\/D、D\\\/A;也为今后学习更高一级的单片机和ARM打下基础。
再说了,哪个老板会将ARM级别的开发放在连51也没有学过的新手手中
在51上面去做复杂的并行扩展是没有必要的,比如,扩展I\\\/O口和A\\\/D、D\\\/A等等,可以直接买带有A\\\/D、D\\\/A的单片机;或者直接使用ARM,它的I\\\/O口线口多。
可以使用I2C接口的芯片,扩展I\\\/O口和A\\\/D、D\\\/A,以及SPI接口扩展LED显示,例如:MAX7219等芯片。
市面上一些比较古老的书籍中还有一些并行扩展的例子,如:RAM、EPROM、A\\\/D、D\\\/A等,我觉得已经没有必要去看了,知道历史上有这些一回事就行了; 这知识,是所有产品都具备的要素。
所以要学,再具体应用。
晶体管共射极单管放大器实验报告怎么写
实验二晶体管共射极单管放大器班级:姓名:学号:日期:2015年11月28日地点:实验大楼206室课程名称:模拟电子技术基础指导老师:同组学生姓名:成绩:一、实验目的1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2、掌握放大器电压放大倍数、、输出电阻及最大不失真输出电压的测试方法。
3、熟悉常用电子仪器及实验设备的使用。
二、实验设备与器件 1、+12V直流电源;2、;3、;4、交流毫伏表5、直流电压表;6、直流毫安表;7、频率计;8、; 9、晶体三极管3DG6×1(β=50~100)或9011×1(管脚排列如图2-7所示);10、电阻器、电容器若干。
三、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。
它的采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。
图2-1共射极单管放大器实验电路 在图2-1电路中,当流过RB1和RB2的电流远大于晶体管T的基极电流IB时(一般5~10倍),则它的静态工作点可用下式估算
实验中信号发生器和示波器各起什么作用
怎样调试一个新设计的电路板调试是一项细心的工作,一定要有耐心。
首先在制作出板子之前,仿真是很有必要的。
其次,对于一个新设计的电路板,调试起来往往会遇到一些困难。
对于刚刚根据原理图打印出来的新PCB板,我们首先要大概观察一下,板上是否存在问题,例如是否有明显的裂痕,有无短路、开路等现象。
本次实验由于油复印上铜板时断线太多,而且用来描线修补的笔出错,导致最后腐蚀的板子断路很多。
然后就是安装元件了,相互独立的模块,如果您没有把握保证它们工作正常时,最好不要全部都装上,而是一部分一部分的装上,焊一部份调一部份。
这样可以减少不必要的工作量,达到事半功倍的效果。
这样容易确定故障范围,免得到时遇到问题时,无从下手。
比如此次实验,就是把电源部分先装好,然后就上电检测电源输出电压是否正常,再依次焊接好三角波发生器,加法器,滤波器,最后再比较器,每安装好一个模块,就上电测试一下。
寻找故障的办法一般有下面几种:1.测量电压法。
首先要确认的是各芯片电源引脚的电压是否正常,其次检查各种参考电压是否正常,另外还有各点的工作电压是否正常等。
2.信号注入法。
将信号源加至输入端,然后依次往后测量各点的波形,看是否正常,以找到故障点。
3.当然,还有很多其它的寻找故障点的方法,看芯片是否焊得颠倒,看元件有无明显的机械损坏,看板子是否有明显的划痕(导致开路),看是否有焊接短路,看是否有明显虚焊,看是否有元件未焊,看元件是否焊错(
急求一份大学物理实验示波器的实验报告
一、实验目的 1. 了解双踪示波器显示波形的工作原理; 2. 学会利用双踪示波器观测电压信号; 3. 学会利用双踪示波器观察李萨如图形,并利用其测量正弦信号的频率。
二、实验仪器 信号发生器、双踪示波器、探头。
三、实验原理 1. 示波器 2. 双踪示波器的原理 3. 示波器显示波形原理 如果在 YCH1 或 CH2 端口加上正弦波,在示波器的 X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的周期相等时,则显示完整周期的正弦波形,如图 3 ,若在 YCH1 和 YCH2 同时加上正弦波,在示波器的 X 偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。
4. 李萨如图形的基本原理 在示波器的 Y 偏转板和 X 偏转板上分别加上正弦波,当信号的频率比值为简单整数比时,得到李萨如图形。
fx 、 fy 为 x,y 偏转板上信号频率, nx 、 ny 为李萨如图形与假想水平线、垂直线的切点数目。
四、实验内容 1. 做好准备工作,设置好示波器; 2. 观察各种波形; 3. 测量正弦波的电压峰值、周期和频率,测四组数据。
六、思考题 1. 简述示波器显示电压——时间图形(即电信号波形)的原理。
答:高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点, Y 偏转板是水平放置的两块电极, X 偏转板是垂直放置的两块电极,在 Y 偏转板和 X 偏转板上分别加电压,可在荧光屏上得到相应的图形。
当然电压不同,周期不同,所得到的图形会不一样。
五、数据处理与分析 1. 测正弦波的电压峰值 次数 Vp-p 测量值( V ) Vp-p 真实值( V ) 误差( V ) 1 3.68 4 0.32 2 8.56 10 1.44 3 13.3 15 1.7 4 18.8 20 1.2 2. 测正弦波的周期、频率 次数 T 真实值( S ) f 真实值( HZ ) f 测量值 (HZ) f 误差 (HZ) 1 1×10-2100 100 0 2 1×10-410410010 10 3 1×10-61061060 4 1×10-71079.963×1063.7×1043. 利用李萨如图形测频率 李萨如图形 fx(HZ) ny nx fy= nx*fx\\\/ ny (HZ) 实际测量值 (HZ) 90 1 1 90 89.9 90 1 2 180 180.1 90 2 1 45 45.2 90 3 2 60 60.7 六、思考题 1. 简述示波器显示电压——时间图形(即电信号波形)的原理。
答:高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点, Y 偏转板是水平放置的两块电极, X 偏转板是垂直放置的两块电极,在 Y 偏转板和 X 偏转板上分别加电压,可在荧光屏上得到相应的图形。
当然电压不同,周期不同,所得到的图形会不一样。
七、注意事项 1. 荧光屏上光点(扫描线)亮度不可调得过亮,并且不可将光点(或亮线)固定在荧光屏上某一点时间过久,以免损坏荧光屏。
2. 示波器和函数信号发生器上所有开关及旋钮都有一定的调节限度,调节时不能用力太猛。
3. 双踪示波器的两路输入端 CH1 , CH2 有一公共接地端,同时使用 CH1 和 CH2 时,接线时应防止将外电路短路。



