欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 线性代数加减的心得体会

线性代数加减的心得体会

时间:2013-05-20 12:32

求线性代数心得体会。

在实际的工作应用中,线性代数比微积分更为常用,更为实用。

在以后的科研工作中也是,我推荐你在网上或者图书馆借阅一本美国的David C.Lay写的一本书《线性代数与应用》,只有在实际生活中看到是怎么运用,就会产生兴趣。

线性代数学习心得

写写你学线性代数的感想呗

当然前提是你得看书了。

比如说可以写你对方程组写成列向量的好处,优势,是不是更方便了呢

线性变换在R3上的作用有什么实际意义

线性变换和原有的线性空间有什么关系,好像维数是一样的吧,那么到了一般情况的向量空间呢

无穷维呢

一样的时候有什么意义

什么是向量空间呢

能不能推广呢

必要的时候可以找些相关的书来看看啊

谈谈学习线性代数的感受

写写你学线性代数的感想呗

当然前提是你得看书了。

比如说可以写你对方程组写成列向量的好处,优势,是不是更方便了呢

线性变换在R3上的作用有什么实际意义

线性变换和原有的线性空间有什么关系,好像维数是一样的吧,那么到了一般情况的向量空间呢

无穷维呢

一样的时候有什么意义

什么是向量空间呢

能不能推广呢

必要的时候可以找些相关的书来看看啊

求线性代数心得体会。

在实际的工作应用中,线性代数比微积分更为常用,更为实用。

在以后的科研工作中也是,我推荐你在网上或者图书馆借阅一本美国的David C.Lay写的一本书《线性代数与应用》,只有在实际生活中看到是怎么运用,就会产生兴趣。

明白人告诉我 线性代数 的应用究竟有多强大

工科几乎都牵涉高数我已经有所体会了 但是线性代数我只感

线性代数有什么用

线性代数有什么用

这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题。

我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你:1、 如果你想顺利地拿到学位,线性代数的学分对你有帮助;2、 如果你想继续深造,考研,必须学好线代。

因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础。

例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论。

3、 如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲。

他在自己的数学名著《数学概观》中说:要是没有线性代数,任何数学和初等教程都讲不下去。

按照现行的国际标准,线性代数是通过公理化来表述的。

它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论。

…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此。

4、 如果毕业后想找个好工作,也必须学好线代:l 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学)。

恭喜你,你的职业未来将是最光明的。

如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料)。

l 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。

l 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象。

l 想搞经济研究。

好,知道列昂惕夫(Wassily Leontief)吗

哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门。

这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型。

列昂惕夫因此获得了1973年的诺贝尔经济学奖。

l 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划。

许多重要的管理决策是在线性规划模型的基础上做出的。

线性规划的知识就是线代的知识啊。

比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。

l 对于其他工程领域,没有用不上线代的地方。

如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解; 作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗

这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。

知道马尔科夫链吗

这个 “链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了。

l 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究。

嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用。

通过一段时间的学习,大家对线性代数也有了些了解。

在我们的生活中,处处可见线性代数的应用。

你好,写小结,就是归纳整理学习知识点式小结一、行列式定义 行列式归底就是一个数值,只不过它是由一大堆数字经过一种特殊运算规则而得出的数而已。

当然这堆数排列成相当规范的n行n列的数表形式了。

所以我们可以把行列式当成一个数值来进行加减乘除等运算。

举个例子:比如说电视机(看做一个行列式),是由很多个小的元件(行列式中的元素)构成的,经过元件的相互作用、联系最终成为一台电视机(行列式)。

那么这n*n个数字是按照什么规则进行运算的呢

行列式是不同行、不同列的所有可能元素乘积的代数和(共有n!项)。

(这里面的代数和,表示每个乘积项是带有正负号的,而正负号的确定要根据行列标的逆序数来判断

) 对于行列式的这个概念,仅仅是给出了行列式的一种通用定义,它能用来求特殊行列式(比如三角行列式、对角行列式等)的值和做一些证明,而真正要来求行列式的值,需要依据行列式的性质和展开法则。

二、行列式性质 行列式的那几条性质其实也很容易记忆。

1、行列式转置值不变。

这条性质说明行列式行、列等价,凡是对行成立的,对列也成立。

2、互换两行(列),行列式变号。

3、两行(列)相等,则行列式为0。

4、数乘行列式等于该数与行列式某一行(列)所有元素相乘

5、两行(列)成比例,则行列式为0。

6、行列式加法运算:某一行(列)每个元素都可以看成两项的和的话,可以将行列式展开成两个同阶行列式的和。

7、某行(列)同乘一个数加到另外一行(列)上,行列式值不变。

这7条性质往往组合使用来求行列式的值。

尤其第7条性质,一定要会熟练运用来将一个行列式化为三角行列式(既要会对行使用,也要会对列使用),最好能自己多做点练习。

三、行列式行(列)展开法则 行列式的行(列)展开法则其实是一种降阶求行列式值的方法。

行列式的行(列)展开法则一定注意一点,即一定是某行(列)每个元素同乘以自己对应的代数余子式。

(即我一直强调的:要配套。

) 如果是某行(列)每个元素同乘以另外一行(列)对应位置的代数余子式则值为零。

(即:不配套。

)矩阵小结初等矩阵的概念是随着矩阵初等变换的定义而来的。

初等变换有三类: 1、位置变换:矩阵的两行(列)位置交换; 2、数乘变换:数k乘以矩阵某行(列)的每个元素; 3、消元变换:矩阵的某行(列)元素同乘以数k,然后加到另外一行(列)上。

初等矩阵:由单位矩阵经过一次初等变换后所得的矩阵。

则根据三类初等变换,可以得到三种不同的初等矩阵。

1、交换阵E(i,j):单位矩阵第i行与第j行位置交换而得; 2、数乘阵E(i(k)):数k乘以单位矩阵第i行的每个元素(其实就是主对角线的1变成k); 3、消元阵E(ij(k)):单位矩阵的第i行元素乘以数k,然后加到第j行上。

其上的三种初等矩阵均可看成是单位矩阵的列经过初等变换而得。

初等矩阵的模样其实我们可以尝试写一个3阶或者4阶的单位矩阵,然后进行初等变换来加深一下印象。

首先:初等矩阵都可逆,其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。

最关键的问题是:初等矩阵能用来做什么

当我们用初等矩阵左乘一个矩阵A的时候,我们发现矩阵A发生变化而成为矩阵B,而这种变化恰好是一个单位矩阵变成该初等矩阵所产生的变化。

具体来说: 左乘的情况: 1、E(i,j)A=B,则矩阵A第i行与第j行位置交换而得到矩阵B; 2、E(i(k))A=B,则矩阵A的第i行的元素乘以数k而得到矩阵B; 3、E(ij(k))A=B,则矩阵A的第i行元素乘以数k,然后加到第j行上而得到矩阵B。

结论1:用初等矩阵左乘一个矩阵A,相当于对矩阵A做了一次相应的行的初等变换。

右乘的情况: 4、AE(i,j)=B,则矩阵A第i列与第j列位置交换而得到矩阵B; 5、AE(i(k))=B,则矩阵A的第i列的元素乘以数k而得到矩阵B; 6、AE(ij(k))=B,则矩阵A的第i列元素乘以数k,然后加到第j列上而得到矩阵B。

结论2:用初等矩阵右乘一个矩阵A,相当于对矩阵A做了一次相应的列的初等变换。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 请注意并理解结论1和结论2中的“相应”两字。

初等矩阵为由单位矩阵E经过一次初等变换(三种)而来,我们可以把初等矩阵看成是施加到单位矩阵E上的一个变换。

若某初等矩阵左(右)乘矩阵A,则初等矩阵会将原先施加到单位矩阵E上的变换,按照同种形式施加到矩阵A之上。

或者说,我们想对矩阵A做变换,但是不是直接对矩阵A去做处理,而是通过一种间接方式去实现。

求一篇线性代数的论文

大一学生看的

简单的说,线性代数的,线性空间的各种性质,这个目的,先研究了矩阵、式等内容、然后对线性空间通过向量、线性相关、线性无关等概念和矩阵、行列式联系起来.对线性空间中的一些函数和变换作进一步研究.比如我们原来高中中学过的二次型进行了扩展,主要是研究这些二次型的标准形式,如何通过线性变化得到这些标准型等等.数理统计和线性代数有很多联系,线性代数是数理统计的基础之一.微积分也是.概率论呢,离散的部分和高数、线代关系小.连续的部分也是高数、线代是基础。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片