欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 二次函数教学心得体会

二次函数教学心得体会

时间:2019-06-01 04:31

高一数学集合题

初中生在学习上的依赖心理是很明显,是“要我学”。

原因是多方面的如:1)为提高分数,初中数学教学中教师将各种题型都一一罗列,学生的数 学学习依赖于教师为其提供套用的“模子”; 2)家长望子成龙心切,经常“参与学习”,进行课后辅导检查。

升入高中后,高一年级的学生,面临教师的教学方法改变,习惯依赖的套用“模子”没有了,家长辅导的能力也跟不上了。

许多同学进入高中后,学习不订计划,课前没有预习,上课忙于记笔记,没听到“门道”。

其学习因依赖心理而滞后,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。

这时要注意培养学生主动的学习态度,要求学生课前预习、课后复习、单元小结和及时改错。

把优秀的学习习惯同学树为榜样,让同学借鉴。

经过升中考后,高一年级的学生有的思想开始松懈,尤其在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中同学,甚至错误的认为高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。

而高中数学的难度远非初中数学能比,需要三年的艰苦努力,加上高考的内容源于课本而高于课本,具有很强的选拨性,想等到高三临考时再发奋一、二个月,其缺漏的很多知识是非常难完成的。

要提倡学生定高中三年学习计划:高一打好基础,高二是关键,高三出成绩。

有利在学校形成良好的心理发展环境,在三年各有侧重,培养学生自我心理调节能力。

培养良好的学习方法和习惯,体会“死记硬背”与“活学活用”的区别。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。

而一部分同学上课不能抓重点难点,不能体会思想方法,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,结果是事倍功半,收效甚微。

在开学初,建议请在高考成绩优异的同学,向高一新同学介绍高中学习心得,让高一新同学有个改变学习方法和习惯的准备;同时,在课堂中研究讨论各种困难问题,让高一新同学体会强化良好的学习方法。

重视基础发展健全的人格,改变“一听就明”、“一看就会”、“一做就错”的学习误区。

高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。

这就要求必须掌握基础知识与技能为进一步学习作好准备。

如二次函数,参变量问题,三角公式的运用,空间与平面,实际应用问题等,是初中教材都不讲的脱节内容,需要高中补救,查缺补漏,否则就必然会跟不上高中学习的要求。

一些“自我感觉良好”的同学,常轻视基本训练,不去认真演算书写,但对难题很感兴趣,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。

这就要重视基础学习,帮助学生体会高中数学与初中数学知识的深度、广度的区别,多用“问”、“想”、“做”、“评”的教学模式,鼓励思考,让学生在做中学,发展健全的人格。

初中数学学习方法指导

怎样学好初中数学?需要使用什么方式哪?数学是很多的学生都在烦恼的问题,有很多的学生存在一定的问题,这个科目的分数非常低,那么怎样学好初中数学哪?有什么方式可以改善吗?知识总结1,听课对于新的知识,一般都是在课堂上通过老师的讲述来了解的所以需要注重学习的效率,找打正确的方式,上课需要更随老师的讲课步骤,积极的了解老师所讲述的知识,需要发现自己解决问题的思路与老师有什么不同,发现之后需要及时的改善,并且在下课之后需要及时的进行复习,这样可以不留下任何的难点,在做作业的时候需要将老师所说的内容完全在脑海当中思索一边,需要正确的认识各种数学的计算方式,对于某种问题不懂的时候,需要冷静下来,然后进行全面的分析,一般情况之下是都可以回答出来的的,这就是怎样学好初中数学的第一步.2,多练想要学好数学,就需要多多的做一些练习题,完全明白各种问题的解决方式,需要从简单的题目开始,一般以书籍内容为正确的答案,进行反复的练习,空闲的时候可以做一些课外的题目,帮助提升自己的思路,可以准备一侧错题本,将所写过的错题记录下来,在回答问题的时候需要将精神集中起来,进入最好的状态,可以在考试当中超强的发挥,这就是怎样学好初中数学的第二部.3,心态对于考试来说,心态是非常重要要的,需要在考试之前全面的调整自己的状态以及心理的状态,让自己保持冷静的态度,改善自身混乱的情绪,在考试之前可以做一些练习题,将自己的状态调整到最佳,在考试之前需要进行复习,并且有空闲时间的话可以将自己错题本浏览一遍,以便于不会再错第二次,复习需要全面的进行,这就是怎样学好初中数学的第三部.知识点所以想要学好数学,需要多方面的努力,这与很多的因素有关,首先可以找到属于自己的学习方式,然后了解这个科目的特点,使自己有一定的了解之后,开始进行学习,相信通过本篇文章你应该知道怎样学好初中数学了吧!

我是一个高中生,要写一篇研究性学习报告,想不好课题。

跪求有创意创新的课题。

先谢过~

一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念的变化:“三句”变“两句”、“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、课程理念中新增加了一些提法要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。

五、“双基”变“四基”2001年版的“双基”:基础知识、基本技能。

2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。

并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。

六、四个领域名称的变化2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。

2011年版:数与代数、图形与几何、统计与概率、综合与实践。

七、课程内容的变化更加注意内容的系统性和逻辑性。

如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。

综合与实践领域的要求更加明确和具有可操作性。

八、实施建议的变化不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。

在强调学生主体作用的同时,明确提出教师的组织和引导作用。

一、“课程基本理念”的修改1.将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

2.将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。

表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。

有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。

”二、“设计思路”的修改1.对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。

2.将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。

确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。

并专门阐述了“应用意识”和“创新意识”。

三、“课程目标”的修改1.明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。

2.提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。

3.完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。

4.规范了课程目标的若干术语。

并在学段目标中使用这些术语。

四、“课程内容”(原“内容标准”)的修改1.对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。

2.从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。

“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。

3.四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。

(1)删除的内容▲在“数与代数”领域,删除了一些内容,例如:①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)②对有效数字的要求——“了解有效数字的概念”(实验稿P32)③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:①关于等腰梯形的相关要求(实验稿P39、P43)②探索并了解圆与圆的位置关系(实验稿P39)③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40)④关于镜面对称的要求(实验稿P41)▲“统计与概率”部分删除的内容极差、频数折线图等内容(2)新增加的内容▲“数与代数”中既有必学的内容,也有选学的内容①知道|a|的含义(这里a表示有理数)②最简二次根式和最简分式的概念③能进行简单的整式乘法运算中增加了一次式与二次式相乘④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等⑤会利用待定系数法确定一次函数的解析表达式以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下:*⑥解简单的三元一次方程组*⑦了解一元二次方程的根与系数的关系*⑧知道给定不共线三点的坐标可以确定一个二次函数▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。

①会比较线段的大小,理解线段的和、差,以及线段中点的意义②了解平行于同一条直线的两条直线平行③会按照边长的关系和角的大小对三角形进行分类④了解并证明圆内接四边形的对角互补⑤了解正多边形的概念及正多边形与圆的关系⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形下面的要求是选学内容:*⑦了解平行线性质定理的证明*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧*⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等*⑩了解相似三角形判定定理的证明(3)在要求上有变化的内容(略)4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。

此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。

这样使综合与实践的学习更加具有可操作性。

五、“实施建议”的修改“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。

六、“实例”的修改增加了一些帮助教师理解、澄清困惑的实例。

并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。

七、增加附录将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。

对实例进行统一编号,便于查找和使用。

浅谈如何提高农村初级中学学生的数学成绩 详细??

论文范文--利用数学建模解数学应用题 数学建着人类的进步,科技的发展和社日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。

数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。

这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。

是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。

往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。

必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。

因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。

可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

第三层次:多重建模。

对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

第四层次:假设建模。

要进行分析、加工和作出假设,然后才能建立数学模型。

如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

3.1提高分析、理解、阅读能力。

阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。

如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

3.2强化将文字语言叙述转译成数学符号语言的能力。

将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。

选择数学模型是数学能力的反映。

数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。

建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。

结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。

有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。

所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。

同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。

关键词:创新能力;数学建模;研究性学习。

《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。

其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。

一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。

教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。

如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大

这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。

这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。

因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

可以写一篇七年级下册数学预习心得吗

我们都知道,人脑最主要的功能是思维,而数学恰好是培养人的思维能力的一门学科。

一颗会思维的头脑是金不换的,它使你在纷繁复杂的世事面前不会迷失自我,它使你能够有条理地处理复杂的问题而显示出你的智慧与力量。

学习是我们大家自己的事,它不应该需要家长、老师逼迫,因为内因材起决定性作用。

如果你自己不想学,别人再怎么逼迫你,结果又能怎样呢

我觉得我们大家学习缺乏主动性,缺乏积极性,缺乏钻研,缺乏毅力,缺乏恒心。

有时候,我甚至觉得我们有的同学把学习当成了负担,当成了任务。

这样的态度,怎么可能能够提高学习成绩呢

不是有句话说“态度决定一切”吗

我觉得我们大家的学习态度对于学习成绩的提高是非常关键的。

那么,学好数学是不是很难呢

现在让你们再回去学习小学数学,会有困难吗

当然没有。

这就对了。

一方面,是因为小学数学确实不难;另一方面,你们现在是初中学生了,站在了人生的又一个高度,你们是用俯视(也可能是藐视)的眼光看待你们学过的小学数学内容,首先在心理上你就是一个胜利者。

其实,我们学习数学就需要这样一种心理。

不妨设想一下,假如你是高中学生,你又会如何看待初中数学的内容呢

世上无难事,只怕有心人。

进入中学,要尽快适应初中数学的教学,要在理解上下功夫。

数学是最讲理的一门学科,数学语言又是最严密的语言。

要力求改变被动学习的现状,积极主动地去学习,尽快把学习成绩赶上去。

根据我多年的教学经验,我认为同学们掌握正确的数学思想和方法是至关重要的,是事半功倍的关键所在。

所谓“数学学习,一步跟不上,则步步跟不上”,是不是说反正你已拉下了好多内容没有学会,就学不好新知识了呢

完全不是这么回事。

我经常给同学们讲:你们学习好的希望只有两个,一是课堂,二是你自己。

课堂上要专心听讲,听不懂的地方,那是因为涉及到这个知识点的旧知识你没学好,以至于你的思维在某一个地方卡住了,这时你要做的只是把以前和这个知识点有关的知识好好补一补。

其实最好的方法是养成预习的好习惯,提前预习新课,发现问题,认真思索问题的原因,看看是不是因为过去某个知识点没有掌握的缘故,缺什么补什么,这样就可以保证新课能听懂了。

当然,人无毅力,将一事无成,如果你自己没有解决问题的毅力和决心,那是谁也没有办法的,所谓天作孽,犹可活,自作孽,不可活,就是这个道理。

我觉得学习数学,要以教科书为根据,做到“四个认真”,即:认真预习、认真听课、认真复习、认真做题。

预习时要做到“五要”:①要用波浪线划出重点;②要将公式及结论做记号;③要在看不懂、有疑问的地方用铅笔画问号;④要将简单习题的答案、解题要点写在后面;⑤如果定义、定理中的条件不止一个,就要把条件编上号码。

认真预习后再去听课,比不预习要好得多。

听课后,在做习题前,还要进行复习,检查书上还有哪些文字看不懂,要认真想,都想明白了,再开始做题。

通过做题,可以对学过的知识加深记忆。

下面,我再就如何学好数学做一下具体讲解,希望对大家有所帮助。

一、杜绝负面的自我暗示,把自信贯穿于解题过程的始终。

首先,要对数学学习不要抱有放弃的想法。

有些同学认为数学差一点没关系,只要在其他科目上多用功就可以把总分补回来,这种想法是非常错误的。

教育界有一个“木桶原理”:一只木桶盛水量的中国取决于它最短的一块木板。

无论是中考还是高考,只有各科全面发展才能取得好成绩。

其次,要杜绝负面的自我暗示。

我们每年都会有许许多多的考试,不可能每一次都取得自己理想的成绩。

在失败的时候不要有“我肯定没希望了”、“我是学不好了”这样的暗示。

相反地,要对自己始终充满信心,要相信只要自己努力,最终成功会来到自己的身边。

在平常学习过程中,许多同学自我感觉掌握得很好,而一做题,却往往做不出来。

老师稍微点拔一下,却又马上豁然开朗。

也就是说,这些题并不是绝对做不出来。

只要认真地去思考,通过分析、综合,运用各种数学思想和方法,去比比画画、写写算算,经过迂回曲折的推理或演算,就能逐渐发现题目的条件和结论之间的本质联系。

自信是成功的秘诀,这并不是一句空话。

面对稍为复杂一点的题,要充满自信,要知道,这些题目一般情况下不会超出自己的知识范畴,是能够用自己所学过的知识把它解出来的。

要敢于去思考,并善于去思考,这是一种很重要的思维品质。

具体解题时,一定要认真审题,正确区分条件和结论,并抓住两个主要环节:一是紧紧抓住这一道题和一类题之间的共性,想想这一类题的一般思路和一般解法;二是紧紧抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。

选择一个或几个条件作为解题的突破口,看由这些条件能得出什么过渡结论,得出的越多越好,然后筛选出有用的结论,进一步进行推理或演算。

这就是老师常给同学们讲的:“聪明的同学是一类一类地学,不聪明的同学是一道一道地学”。

要知道,题海无边,只有举一反三,触类旁通,才能跳出题海,领会数学学习的奥妙。

二、仔细看书,弄懂数学语言;认真听课,掌握思维方法。

不爱读数学教科书,是中学生的“通病”。

数学教科书是用数学语言写它成包括文字语言、符号语言、图形语言。

它语言简洁、逻辑性强、内涵丰富、含义深刻,因而看数学教科书切不可浮光掠影,一目十行。

数学概念、定义、定理等都用文字语言表述,看书时务必留心。

符号语言有丰富的内涵,要写得出,辩得清、记得牢。

读符号语言,要说得出它的涵义,辩得明它的特征。

图形语言既能反映元素的相对位置,又是数量关系的直接反映。

因而观看几何图形时要读懂隐藏在图形元素之间的内在联系及数量关系;而观看图像,要从其形状窥视出函数的性质。

如果课前、课后阅读数学书能达到上述要求,学数学也就入门了;若由此养成读书的良好习惯,提高成绩则指日可待。

听课要全神贯注,随着老师的讲解积极思维。

预习时似懂非懂的概念弄明白了么

疑团化解了么

老师口授的真知灼见、补充的例题、精彩的解法,要抓紧记录下来。

写好听课笔记,不但留下一份宝贵的资料,而且也能促使自己注意力集中。

记笔记别丢了“西瓜”,也就是说要不影响听课的效果。

有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是“捡了芝麻丢了西瓜”,反而有些得不偿失。

听课时还要做到不断生疑、质疑,敢于提问、答问。

要想想老师的讲解是否完整无误,解法是否严谨无瑕。

板书的范例如果懂了,就应思谋新的解法;如果有疑点就应大胆质疑。

争着回答问题绝不是“图表现”,而是阐述自己的见解,提高自己的口头表达能力。

即使自己回答错了,将问题暴露后,也便于订证。

听课最忌盲从,随波逐流,人云亦云,不懂装懂。

无论是中考还是高考,数学试卷中大部分的题目都是基础题,只要把这些基础题做好,分数便不会低了。

要想做好基础题,平时上课时的听课效率便显得格外重要。

一般来说,丰富经验的老师上课时(尤其是复习阶段)的内容可谓是精华,认真听讲45分钟要比自己在家复习两个小时还要有效。

三、独立钻研,学会归纳总结;用好参考书,拓展个人视野. 养成良好的独立钻研学习的习惯必须做到:①按时完成作业,巩固所学知识。

作业惟有按时完成,才能得以巩固知识,尽量减少遗忘。

而在完成作业的过程中,将增大知识复现率,促进自己的思考力,发挥解决问题的创造力。

善于学习的同学还应注意作业的保洁与收藏,因为这既是珍视自己的劳动成果,也是很好的复习资料。

②适时复习功课,形成知识中国络。

章节复习、单元复习、迎考复习等是数学学习不可或缺的一部份,它有承前启后的作用。

复习时应按照一定的系统归纳总结知识,总结方法,形成数学的“经纬中国”。

这里的“经”指的是数学的各个分支的知识;“纬”指的是相同的数学方法在不同分支中的应用。

要想学好数学就必须织好数学的“经纬中国”。

③应注重书写的规范化。

数学学科是一门专业性很强的学科,它对表达、叙述的过程,符号使用的规定都有严格的要求。

因而在做练习、作业、考试时书写都应规范化。

④运用所学知识,不断开拓创新。

数学有很强的联贯性,新旧知识之间并没有不可逾越的鸿沟。

因此借书本知识,进行联想,不但可以增强钻研兴趣,而且能培养自己的创造性思维能力。

在选择参考书方面可以听一下老师的意见。

一般来说,老师会根据自己的教学方式和进度给出一定的建议,数量基本在1—2本左右,不要太多。

在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好。

做题的时候要多做基础题,并且要定好时间,这样可以提高解题速度。

在考前冲刺阶段要保证1—2天做一套试卷来保持状态。

最重要的是,要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握。

在这里有个小建议:在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习。

四、记住必要的基础知识是熟练解题的关键。

有的同学认为,只有语文、英语、政治、历史、地理、生物等学科才需要记忆,而数学靠的是运算、推理和分析,是不需要记忆的。

这种认识是大错特错的。

“博闻强记”是做学问的不二法门。

不记住必要的数学基础知识,你的数学思维的空间就会越来越窄,势必让你的数学学习走进死胡同。

例如,不记住小学的 “九九乘法口诀表”,你能顺利地进行乘法运算吗

尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81 就太不合算了。

而用“九九八十一”求出结果就方便多了。

又如,你在解方程2x2+3x-1=0时,如果你不记住一元二次方程的求根公式 ,你只能用比较繁琐的配方法一步步去推理。

另外,这个公式又是研究一元二次方程根与系数关系、二次函数、一元二次不等式等知识的基础,没有这个公式作基础,这些知识的学习只能陷于进退维谷的地步。

其实,数学学习更像游戏,例如,下中国象棋,如果你不记住马走日,象走田,炮打隔一位等游戏规则,你如何能下好中国象棋

这些游戏规则就好像数学学习中的基础知识。

九年义务教育初级中学数学新课程标准》对初中数学中的基础知识作这样的描述:“初中数学中的基础知识包括初中代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。

” 数学的定义、法则、性质、公式、公理、定理等一定要记熟,要能背诵,朗朗上口。

我们常说要在理解的基础上去记忆。

但有些基础知识,如定义,是没有什么道理好讲的。

如一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1,未知数的系数不能为0的方程叫做一元一次方程。

在这个定义中,为什么只含有一个未知数而不是两个、三个,为什么未知数的最高次数是1而不是2或者3,为什么未知数的系数不能为0等,这些问题是没有什么价值的,或者说,定义只不过是对某种事物或现象的一种规定的或固有的含义。

而有些基础知识,如法则、公式、定理等,不但要知其然,还要知其所以然。

如平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补等,不但要记住,还要能够运用所学知识说明平行的两直线为什么有这样的性质。

这就是我们说的在理解的基础上去记忆。

在学习过程中,难免有一些暂时不理解的基础知识,在这种情况下,即使死记硬背也要记住,记住后,在后绪的学习过程中再去逐步理解。

另外,一些重要的数学方法,数学思想也是需要记住的。

只有这样,你在解数学题的过程中才能得心应手,从而体验到数学的美学价值,培养起学好数学的信心。

五、讲“方法”联系“思想”,以“思想”指导“方法”,两者相得益彰。

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识,是属于数学观念一类的东西,比较抽象。

所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映,它是实施数学思想的手段。

数学思想是数学的灵魂,数学方法是数学的行为。

运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。

若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

  在初中数学的学习中,要求了解的数学思想有:方程函数的思想、数形结合的思想、转化的思想、分类讨论的思想、隐含条件的思想、整体代换的思想、类比的思想等。

要求“了解”的方法有:分类法、类比法、反证法;要求“理解”或“会运用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法、特值法等。

其实思想和方法是不能截然分开的,初中数学中用到的各种方法都体现着一定的思想,而数学思想又是对方法的理性认识。

因此,通过对数学方法的理解和应用以达到对数学思想的了解,是使思想与方法得到交融的有效方法。

在数学学习的过程中,一定要全面渗透数学思想与方法,学习了一个知识点或做了一道题,要认真思考一下,用到了哪些数学思想与方法。

数学思想与方法虽然说法各异,但毕竟是有限的,正确运用数学思想与方法学习数学或解题,有利于对知识进行比较归类,只有这样,才能把所学知识学得系统,学得灵活,才能把所学的知识真正纳入到你的知识结构中去,变成自己的财富。

另外,由于数学思想的抽象性,数学方法虽然比较具体,但方法本身就是科学,是一种更为重要的知识,还是有一定难度的,所以,在刚接触时,难免理不出头绪,这是一种正常现象,不用产生惧怕心理。

特别是数学思想,是一个逐渐渗透的过程,要在循序渐进的学习过程中结合具体的数学知识或题目去理解。

如在学习有理数、三角形、四边形、圆周角和弦切角定理的证明、一元二次方程求根公式的推导等知识时,会涉及到分类讨论的思想。

分类讨论思想的原则是:标准统一、不重不漏。

它的优点是具有明显的逻辑性特点,能很好地训练一个人思维的条理性和概括性。

方程的思想实现了由小学的算术法向初中代数法的转化,这是数学思想的一个实质性飞跃。

方程的思想是指对于数学问题中的未知量和已知量之间的关系,用构建方程的方法去解决。

我们会发现,许多问题只要借助列方程的方法去解决,往往使得问题迎刃而解。

数形结合的思想有利于把抽象的知识形象化。

在初中数学的学习中,“数”与“形”是密不可分的,如借助数轴能很好地理解有理数的有关概念和运算,许多列方程解应用题的题目通过题意画出图形能容易地找出各量之间的相等关系,函数问题等就更离不开图象了。

往往借助图象能使问题明朗化,容易找到问题的关键所在,从而解决问题。

转化的思想具体表现为从未知到已知的转化、一般到特殊的转化等。

这些数学思想与方法,也会贯穿在老师教学的过程中,在课堂上要注意专心听讲,向老师学习,向课堂学习。

布鲁纳指出:掌握数学思想方法可以使数学更容易理解和记忆。

充分说明了数学思想与方法的重要性。

六、形成良好的思维品质是理解数学问题的基础。

  数学,作为培养人的思维能力的一门学科,以其理性的思考而引人入胜。

它不像游山观景,以其迷人的景色让人赏心悦目,流连忘返。

数学学习,是通过思考与反思去研究事物的空间形式和数量关系,让事物的空间形式与数量关系呈现出来。

只有形成良好的思维品质,以良好的思维品质这把利刃拔开事物的表象,才能“看”到事物的本质。

  那么什么是良好的思维品质呢

我们以生活中“串门”这种现象为例来说明。

许多人都有这样的生活体验,让别人带着去某人家串门,去了一次,两次,也可能是多次。

有一天你不得不自己去某人家串门。

当你走到某人家附近时,面对林立的整齐划一的建筑群,你茫然失措了,不知道某人家到底在哪儿。

  在学习过程中,我们就经常出现这样的现象。

在课堂上,老师讲得头头是道,同学们听得只点头,感觉明白至极。

而一让同学们自己做题,又不知从何入手了。

主要原因就在于同学们没有对所学的知识进行深入的思考,去理解所学知识的本质。

就像串门,每次去某人家的时候,我们就应该对某人家周围的地理环境,特别是有什么特殊的标志进行记忆一样。

要理解我们所学的知识有什么特点,有哪些内容是需要记住的,特别是这一节知识涉及到哪些数学思想和方法是需要及时掌握的。

该记忆的内容要注意用心去记,只有记住必要的知识,思维才有依据。

另外,要注意作好笔记。

培根在《论求知》中说:“作笔记能使知识精确。

如果一个人不愿做笔记,他的记忆力就必须强而可靠”。

要注意把老师讲的重点,特别是老师总结的一些经验性、规律性的知识记下来,便于课后及时复习。

课后复习,要思考有哪些问题已经搞会了,有哪些问题还没有搞会,并及时做好查漏补缺的工作。

七、应考时要舍得放弃。

对于大部分数学基础不是很扎实的同学来说,放弃最后两题应该是一个比较明智的选择。

一般来说,质量较高的数学试卷,最后两题对于能力的要求较高。

数学基础较弱的同学不要花太多的时间在这里,而应把精力放在前面的基础题上,这样成绩反而会有所提高。

中高考的大题目都是按过程给分的,所以万一遇到不会的题也不要空着,应根据题意尽量多写一些步骤。

在对待粗心这个常见问题上,我有一个建议,就是要养成打草稿的习惯,而且要规范草稿,把打草稿当成规范的作业去对待(只是不抄题罢了),让你的草稿一目了然,这样便不太会出现看错或抄错的现象了。

考试中有时可以用计算器来提高解题速度解决难题。

但是,在考试过后一定要把题目正规的解题思路了解清楚。

每一次考试的试卷都是珍贵的复习资料,一定要妥善保存。

以上从七个方面谈了如何学好初中数学的问题。

要学好初中数学,除了要做到上边所谈外,勤奋刻苦的学习精神,认真仔细的学习态度,培养良好的学习习惯也是学好数学的关键。

在课堂上,不仅是学习新知识,还要潜移默化地学习老师解决问题的思维方式,面对一个问题,最后是提前思考,找出自己的思维方式,然后把自己的思维方式与老师的思维方式作比较,取长补短,进而形成自己的思维方式。

由“要我学”转变为“我要学”,培养学习的主动性,克服被动学习的局面。

真正掌握数学学习的要领。

检验数学学得好不好的标准就是会不会解题。

听懂并记忆有关的数学基础知识,掌握学习数学的思想与方法,只是学好数学的前提,能独立解题、解对题才是学好数学的标志。

该上高三了,关于数学,暑假应该做些什么

作为数学教师,我认为你最好先做一下这几年的高考真题,只有一小部分知识还没学,大部分都学过了,认真做过后,最好找老师看一下,指导一下。

然后了解高考方向难度,了解自己知识掌握情况,然后有针对性地复习。

注意上高三前基本功搞扎实,高三轻松自如。

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片