
麦克斯韦的贡献到底有多大
麦克斯韦的电磁理论,在物理学上有划时代的意义。
遗憾的是,麦克斯韦本人没有能够证实自己的理论(在一定程度上可以说是“没有去证实”)。
这有客观原因,也有主观原因。
由于环境和工作条件的限制,麦克斯韦一直没有更多的机会从事电磁实验。
热力学和分子物理学的研究,耗去了他大部分时间和精力。
再有,他主要是个理论物理学家。
就像他的学生弗莱明(1849~1945)后来所说的那样,“他从理论上预言了电磁波的存在,但是好像从来没有想到过要用什么实验去证明它。
”法拉第一辈子都没有离开过实验,可以说没有实验就没有法拉第。
麦克斯韦恰好相反,他只是在伦敦的5年里进行了一些有限的实验,而且多半是气体动力学方面的。
他的寓所,靠近屋顶的地方有一间狭长的阁楼,那就是他的实验室。
他的妻子常常给他当助手,生火炉,调节室内温度,条件相当简陋。
后来在皇家学院实验室里,他作过一些电学实验,也多只是测定标准电阻这一类工作。
《电磁学通论》完成以后,麦克斯韦忙着筹建卡文迪许实验室,整理卡文迪许 (1731~1810)的遗著。
由于以上这些原因,电磁理论问世以后,在相当长的时间里没有得到承认。
最初只有剑桥大学的一些青年物理学家支持它。
许多人,包括一批有威望的科学家,对还没有被证明的新理论,都采取观望态度。
劳厄(1879~1960)在《物理学史》中曾经这样评论说:“尽管麦克斯韦理论具有内在的完美性,并且和一切经验相符合,但是只能逐渐地被物理学家们接受。
它的思想太不平常了,甚至像赫尔姆霍茨和波尔茨曼(1844~1906)这样有异常才能的人,为了理解它也花了几年的力气。
” 几个春秋过去了。
麦克斯韦把他的心血默默地献给了卡文迪许实验室。
这座实验室在1872年破土,到1874年完工。
修建经费是一位鼓励科学的公爵捐赠的。
为了增添仪器,麦克斯韦也拿出了自己不多的积蓄。
在整个筹建过程中,从设计、施工、仪器购置,直到大门上的题词,麦克斯韦都亲自过问。
它是实验室的创建人,也是第一任主任。
后来相继接替他的是瑞利(1842~1919)和约瑟夫·汤姆逊,汤姆逊以后是卢瑟福(1871~1937),他们都是世界第一流的物理学家。
这座实验室开花结果的时期在20世纪。
大批优秀的科学人才,尤其是原子能物理方面的人才,都是从这里培养出来的。
麦克斯韦最后几年的主要工作,是整理卡文迪许留下的大量资料。
这项由公爵委托给他的任务,工作相当繁重。
卡文迪许是18世纪一位性情怪僻的英国著名物理学家和化学家。
他曾经发现氢气,确实水的化学组成,第一个计算地球的质量,在静电学上也很有研究。
他终身未娶,为人腼腆,喜欢离群索居,死后留下二十多扎没有发表的科学手稿,大多涉及数学和电学,其中不少很有价值的东西埋没了几乎半个世纪。
整理这些资料是一件非常细致而困难的工作,麦克斯韦为了完成这项工作,作出了很大的牺牲:他放弃了自己的研究,耗尽了精力。
除了卡文迪许实验室的日常事务以外,麦克斯韦每学期都要主讲一门课,内容是电磁学或者热力学。
他在讲台上热心地宣传电磁理论,推广新学说。
可惜听众不多。
他本来就不善于讲演,更何况电磁理论是那样的高深,同传统的物理学大相径庭呢
1878年5月,他举行了一次有关电话的科普讲演。
电话当时还是新事物,刚刚破土而出。
1875年贝尔发明电话,第二年取得专利,1877年爱迪生公布阻抗式送话器。
这些人类电信史上的新发明,引起了麦克斯韦莫大的兴趣。
可能,他当时已经预感到,他的理论总有一天会给这些发明插上双翅,传遍全球。
麦克斯韦后期的生活充满了烦恼。
他的学说没有人理解,妻子又久病不愈。
这双重的不幸,压得他精疲力尽。
妻子生病以后,整个家庭生活的秩序都乱了。
麦克斯韦对妻子一向体贴入微,为了看护妻子,他曾经整整三个星期没有在床上睡过觉。
尽管这样,他的讲演,他的实验室工作,却从来没有中断过。
过分的焦虑和劳累,终于损害了他的健康。
同事们注意到这位无私的科学家在渐渐地消瘦下去,面色也越来越苍白。
但是,他还是那样顽强地工作。
1879年是麦克斯韦生命的最后一年。
这一年的春天来得很晚,也格外冷。
他的健康明显恶化,但是他仍然坚持不懈地宣传电磁理论。
这时,他的讲座只有两个听众。
一个是美国来的研究生,另一个就是后来发明电子管的弗莱明。
这是一幕多么令人感叹的情景啊
空旷的阶梯教室里,只在头排坐着两个学生。
麦克斯韦夹着讲义,照样步履坚定地走上讲台,他面孔消瘦,目光闪烁,表情严肃而庄重。
仿佛他不是在向两个听众,而是在向全世界解释自己的理论。
1879年11月5日,麦克斯韦患癌症去世,终年只有49岁。
物理学史上一颗可以同牛顿交相辉映的明星陨落了。
他正当壮年就不幸夭折,这是非常可惜的。
他的理论为近代科学技术开辟了一条崭新的道路,可是他的功绩,在他活着的时候却没有得到人们重视。
麦克斯韦的一生,是咤叱风云的一生,也是自我牺牲的一生。
这位科学巨匠生前的荣誉远远不及法拉第,直到他死后许多年,在赫兹证明了电磁波存在以后人们才意识到,并且公认他是“牛顿以后世界上最伟大的数学物理学家”。
麦克斯韦 (1831-1879)。
麦克斯韦是继法拉第之后,集电磁学大成的伟大科学家。
他依据库仑、高斯、欧姆、安培、毕奥、萨伐尔、法拉第等前人的一系列发现和实验成果,建立了第一个完整的电磁理论体系,不仅科学地预言了电磁波的存在,而且揭示了光、电、磁现象的本质的统一性,完成了物理学的又一次大综合。
这一理论自然科学的成果,奠定了现代的电力工业、电子工业和无线电工业的基础。
谁有 爱因斯坦传 的读后感?
看完这本传记后,我对有了一些感觉,不如说有了一些感情。
他是个普通的人,极致地理性又淋漓地感性,同时又如此彻悟人类和宇宙。
他不算个英雄吧,不是那种看完了你会敬畏,而像个邻家的老伯,有着英俊潇洒的过去,如今可以平易近人地指导你成长。
好像是这种感觉,所以读到他的离去,有些悲伤,这种心情下写的读后感肯定有些情绪化。
【爱因斯坦生平】 爱因斯坦是当代最伟大的物理学家。
他热爱物理学,把毕生献给了物理学的理论研究。
人们称他为20世纪的哥白尼、20世纪的牛顿。
爱因斯坦生长在物理学急剧变革的时期,通过以他为代表的一代物理学家的努力,物理学的发展进入了一个新的历史时期。
由伽利略和牛顿建立的古典物理学理论体系,经历了将近200年的发展,到19世纪中叶,由于能量守恒和转化定律的发现,热力学和统计物理学的建立,特别是由于法拉第和麦克斯韦在电磁学上的发现,取得了辉煌的成就。
这些成就,使得当时不少物理学家认为,物理学领域中原则性的理论问题都已经解决了,留给后人的,只是在细节方面的补充和发展。
可是,历史的进程恰恰相反,接踵而来的却是一系列古典物理学无法解释的新现象:以太漂移实验、元素的放射性、电子运动、黑体辐射、光电效应等等。
在这个新形势面前,物理学家一般企图以在旧理论框架内部进行修补的办法来解决矛盾,但是,年轻的爱因斯坦则不为旧传统所束缚,在洛伦兹等人研究工作的基础上,对空间和时间这样一些基本概念作了本质上的变革。
这一理论上的根本性突破,开辟了物理学的新纪元。
爱因斯坦一生中最重要的贡献是相对论。
1905年他发表了题为《论动体的电动力学》的论文,提出了狭义相对性原理和光速不变原理,建立了狭义相对论。
这一理论把牛顿力学作为低速运动理论的特殊情形包括在内。
它揭示了作为物质存在形式的空间和时间在本质上的统一性,深刻揭露了力学运动和电磁运动在运动学上的统一性,而且还进一步揭示了物质和运动的统一性(和能量的相当性),发展了物质和运动不可分割原理,并且为原子能的利用奠定了理论基础。
随后,经过多年的艰苦努力,1915年他又建立了广义相对论,进一步揭示了四维空时同物质的统一关系,指出空时不可能离开物质而独立存在,空间的结构和性质取决于物质的分布,它并不是平坦的欧几里得空间,而是弯曲的黎曼空间。
根据广义相对论的引力论,他推断光在引力场中不沿着直线而会沿着曲线传播。
这一理论预见,在1919年由英国天文学家在日蚀观察中得到证实,当时全世界都为之轰动。
1938年,他在广义相对论的运动问题上取得重大进展,即从场方程推导出物体运动方程,由此更深一步地揭示了空时、物质、运动和引力之间的统一性。
广义相对论和引力论的研究,60年代以来,由于实验技术和天文学的巨大发展受到重视。
另外,爱因斯坦对宇宙学、用引力和电磁的统一场论、量子论的研究都为物理学的发展作出了贡献。
爱因斯坦不仅是一个伟大的科学家,一个富有哲学探索精神的杰出的思想家,同时又是一个有高度社会责任感的正直的人。
他先后生活在西方政治漩涡中心的德国和美国,经历过两次世界大战。
他深刻体会到一个科学工作者的劳动成果对社会会产生怎样的影响,一个知识分子要对社会负怎样的责任。
爱因斯坦一心希望科学造福于人类,但他却目睹了科学技术在两次世界大战中所造成的巨大破坏,因此,他认为战争与和平的问题是当代的首要问题,他一生中发表得最多的也是这方面的言论。
他对政治问题第一次公开表态,就是1914年签署的一个反对第一次世界大战的声明。
他对政治问题的最后一次发言,即1955年4月签署的“罗素—爱因斯坦宣言”,也仍然是呼吁人们团结起来,防止新的世界大战的爆发。
在20世纪思想家的画廊中,爱因斯坦,就是公正、善良、真理的化身。
他的品格与天地日月相争辉,他的科学贡献,人类将万世景仰。
本书不仅以翔实的史实勾勒出爱因斯坦伟大的一生,而且也从人类文化的源头上探寻着爱因斯坦思想、人格的精神底蕴。
在书中,玄奥的物理学理论、传奇般的故事,在读者理喻20世纪历史文化进程的视野中,或许会形成一个既有深度、又有趣味的立体画面。
同时,我们将在历史氛围中去理解爱因斯坦,也将在现实情境中去悄然接受爱因斯坦的精神感召。
爱因斯坦曾以理性之剑为当代物理学辟出一条新路,也曾以理性之剑挥斩人间的妖魔鬼怪,而今天,这把理性之剑在哪里
我们是否该去寻找这把理性之剑
这是爱因斯坦留下的一个硕大问号。
每一个走向21世纪的人都该在这个问号面前沉思默想,都应该接过爱因斯坦的理性之剑,为和谐、公正的21世纪而努力。
一 慕尼黑 ●音乐的魅力 1879年3月14日,德国乌尔姆小城。
这一天,我们居住的地球上,有多少生命带着茫然的神情降生
不知道。
但历史注定要把这一天变得无比神圣。
倘若茫茫宇宙中果真有无数智慧的星球,并在某一天和地球上的人类沟通了文明的信息,他们也会为这一天脱帽致敬。
这一天的荣耀,就来自于一个名叫阿尔伯特·爱因斯坦的婴孩的第一声啼哭。
遗憾的是,人类在经历伟大瞬间时,又总生不出伟大的感觉。
平凡、普通、没有喧哗、也无激动,爱因斯坦的降生日,最初只不过给他的父母带来常人的欢乐。
爱因斯坦的双亲都是犹太人。
早在公元16世纪,爱因斯坦的犹太祖先便从不知名的地方游荡到德国。
不知什么原因,他们突然放弃了犹太人四处迁徙的古老传统,转而钟情德国大地的山川、河流与森林,开始了定居生活。
到爱因斯坦父母这一代,除了些微宗教习惯外,他们实际上成为地道的德国人,说德语、爱德国,把德国视为自己的祖国,把自己视为理所当然的德国人。
爱因斯坦的父亲赫尔曼·爱因斯坦和母亲波林·科克两家人一直定居在德国乌尔姆城。
1876年8月8日结婚后,两人的小家先在慕斯特广场,后移居到班霍夫街。
1944年,行将灭亡的第三帝国在遭至灭顶之灾时,也让爱因斯坦的出生地做了殉葬品,盟军的连续空袭使爱因斯坦父母的住所成为一片废墟。
犹太人善于经商赚钱的传统没有在赫尔曼·爱因斯坦身上得到骄傲的体现,或是漫不经心,或是不善投机,赫尔曼·爱因斯坦先生在生意场上表现平平,勉强维持着一家的生计。
但他是一个精神上的乐天派,心灵平静,诚实温和,德意志民族追求崇高人格、自由精神的文化韵味让他如痴如醉。
赫尔曼·爱因斯坦本来极有数学天赋,中学时代就引人注目,可父母没钱供他上大学,他不得不弃学经商。
渴求知识、渴求精神充实的愿望使他讨厌帐本,每到晚上,他总和心爱的诗人席勒、海涅的作品作伴,还要在客厅里高声诵读。
读到精彩的地方,他会突然定住脚步,以夸张的动作摘下夹鼻眼镜,脸上绽开无比纯真的孩童般的笑容,一双善良的眼睛盯着亲爱的妻子,说:“听,听呀,亲爱的波林,这诗多美
”
麦克斯韦的奉献是什么
1.名师出高徒 杨振宁,这是一个在当代中国家喻户晓的名字,更是一个让全世界的华人感到骄傲的名字。
杨振宁能取得如此巨大的成就,是与他善于寻求并能够获得名师的指点分不开的。
俗话说“名师出高徒”。
杨振宁的父亲就是他的第一位“名师”。
1922年9月22日,当杨振宁出生在安徽合肥市时,他父亲正在百里之外的安庆市一所中学里教数学。
这位名叫杨武之的中学老师学识渊博又不断进取,就在杨振宁未满周岁之际,杨武之考取了公费留洋名额去美国。
6年之后,他获得博士学位并回国,先大厦门大学任教,后来又应聘聘到清华大学任教数学系教授。
杨振宁的群论知识就是得益于他父亲杨武之。
2.吉利的第8号报名单 1938年西南联大招考报名时,杨振宁早早来到报名处,领到了序号是“第8号”的报名单。
最后他以优异的成绩考进西南联大,就在那里,他走上了探索科学的道路。
西南联大的物理系,真是群星荟萃、英才毕至:赵忠尧、吴有训、周培源、吴大猷、王竹溪等等,这些当代中国物理学界的泰斗们,当时都在那里任教。
1942年,他在吴大猷教授的指导下完成了毕业论文,获得了物理学学士的学位。
过了两年,杨振宁又在王竹溪教授门下攻读研究生,并取得了物理学硕士学位。
3.心目中崇拜的三位物理学大师 1944年,杨振宁考取了留学奖学金,1945年,他来到美国。
当时,杨振宁最佩服的物理学家有三位:创立相对论的爱因斯坦,量子力学创始人之一的狄拉克和主持建造世界上第一座原子核反应堆的费米。
这三位物理学大师都是诺贝尔奖获得者,他们有个共同的特点,就是能在非常复杂的物理现象中一下子抓住问题的实质,然后用简单而美妙的数学方法把它们表示出来。
深受三位大师的影响,杨振宁日后的工作也带有这样的特点。
4.走进“象牙之塔” 杨振宁来到美国后就想追随费米,于是,他来到费米任教的芝加哥大学。
但是,当时费米正在参加研制原子弹的工作,由于保密的要求,不容他与外界多接触,于是他把杨振宁介绍给泰勒博士(后来成为美国的氢弹之父)。
1948年,杨振宁在泰勒的指导下,以优秀的成绩取得了博士学位。
一年之后,由费米和泰勒的推荐,杨振宁来到号称“象牙之塔”的普林斯顿高等学术研究所。
举世闻名的爱因斯坦就在那里工作。
那是个研究气氛非常活跃,而竞争也是很激烈的地方。
在那里,杨振宁同李政道、米尔斯等人合作,取得了他一生中最重要的两项成就:他与李政道合作,推翻了几十年来被物理学界奉为金科玉律的“宇称守恒定律”,提出了在弱相互作用中宇称不守恒,两人因此而共同获得1957年诺贝尔物理学奖;他和米尔斯合作提出了规范场理论,这是迄今为止人类发现的三种场理论中的一种,还有两种是麦克斯韦提出的电磁场理论,和爱因斯坦提出的广义相对论引力场理论。
5.20世纪的第三位“物理全才” 有人说他是20世纪中继爱因斯坦和费米之后,第三位具有全面的知识和才能的“物理学全才”。
不管怎样,昔日的“高徒”杨振宁在众多“名师”的培养下脱颖而出,自已也成为一位“名师”了。
通信的发展历史
《电磁学通论》《论法拉第的力线》《论物理的力线》《电磁场的动力学理论》詹姆斯•克拉克•麦克斯韦是继法拉第之后集电磁学大成的伟大科学家。
1831年11月13日生于苏格兰的爱丁堡。
10岁时进入爱丁堡中学学习。
1847年进入爱丁堡大学学习数学和物理。
1850年转入剑桥大学三一学院数学系学习,1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。
1860年到伦敦国王学院任自然哲学和天文学教授。
于1873年出版了电磁场理论的经典巨著《电磁学通论》,1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建卡文迪许实验室,1874年建成后担任这个实验室的第一任主任,直到1879年11月5日在剑桥逝世。
中文名: 詹姆斯·克拉克·麦克斯韦 外文名: James Clerk Maxwell 国籍: 英国 出生地: 苏格兰爱丁堡 出生日期: 1831年11月13日 逝世日期: 1879年11月5日 职业: 物理学家 毕业院校: 剑桥大学三一学院 主要成就: 建立麦克斯韦方程组创立统计物理学系统、完善地阐述了经典电磁理论建立卡文迪什实验室
爱因斯坦是怎么提出相对论的
电 学 发 展 史电一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。
自从18世纪中叶以来,对电的研究逐渐蓬勃开展。
它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。
现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。
随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。
电学又可称为电磁学,是物理学中颇具重要意义的基础学科。
电学的发展简史 有关电的记载可追溯到公元前6世纪。
早在公元前585年,希腊哲学家泰勒斯已记载了用木块摩擦过的琥珀能够吸引碎草等轻小物体,后来又有人发现摩擦过的煤玉也具有吸引轻小物体的能力。
在以后的2000年中,这些现象被看成与磁石吸铁一样,属于物质具有的性质,此外没有什么其他重大的发现。
在中国,西汉末年已有碡瑁(玳瑁)吸偌(细小物体之意)的记载;晋朝时进一步还有关于摩擦起电引起放电现象的记载今人梳头,解著衣时,有随梳解结有光者,亦有咤声。
1600年,英国物理学家吉伯发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质。
为了表明与磁性的不同,他采用琥珀的希腊字母拼音把这种性质称为电的。
吉伯在实验过程中制作了第一只验电器,这是一根中心固定可转动的金属细棒,当与摩擦过的琥珀靠近时,金属细棒可转动指向琥珀。
大约在1660年,马德堡的盖利克发明了第一台摩擦起电机。
他用硫磺制成形如地球仪的可转动球体,用干燥的手掌摩擦转动球体,使之获得电。
盖利克的摩擦起电机经过不断改进,在静电实验研究中起着重要的作用,直到19世纪霍耳茨和推普勒分别发明感应起电机后才被取代。
18世纪电的研究迅速发展起来。
1729年,英国的格雷在研究琥珀的电效应是否可传递给其他物体时发现的区别:金属可导电,丝绸不导电,并且他第一次使人体带电。
格雷的实验引起法国迪费的注意。
1733年迪费发现绝缘起来的金属也可摩擦起电,因此他得出所有物体都可摩擦起电的结论。
他把玻璃上产生的电叫做玻璃的,琥珀上产生的电与树脂产生的相同,叫做树脂的。
他得到:带相同电的物体互相排斥;带不同电的物体彼此吸引。
1745年,荷兰莱顿的穆申布鲁克发明了能保存电的莱顿瓶。
莱顿瓶的发明为电的进一步研究提供了条件,它对于电知识的传播起到了重要的作用。
差不多同时,美国的做了许多有意义的工作,使得人们对电的认识更加丰富。
1747年他根据实验提出:在正常条件下电是以一定的量存在于所有物质中的一种元素;电跟流体一样,摩擦的作用可以使它从一物体转移到另一物体,但不能创造;任何孤立物体的电总量是不变的,这就是通常所说的。
他把摩擦时物体获得的电的多余部分叫做带正电,物体失去电而不足的部分叫做带负电。
严格地说,这种关于电的一元流体理论在今天看来并不正确,但他所使用的正电和负电的术语至今仍被采用,他还观察到导体的尖端更易于放电等。
早在1749年,他就注意到雷闪与放电有许多相同之处,1752年他通过在雷雨天气将风筝放入云层,来进行雷击实验,证明了雷闪就是放电现象。
在这个实验中最幸运的是居然没有被电死,因为这是一个危险的实验,后来有人重复这种实验时遭电击身亡。
还建议用避雷针来防护建筑物免遭雷击,1745年首先由狄维斯实现,这大概是电的第一个实际应用。
18世纪后期开始了电荷相互作用的定量研究。
1776年,普里斯特利发现带电金属容器内表面没有电荷,猜测电力与万有引力有相似的规律。
1769年,鲁宾孙通过作用在一个小球上电力和重力平衡的实验,第一次直接测定了两个电荷相互作用力与距离二次方成反比。
1773年,卡文迪什推算出电力与距离的二次方成反比,他的这一实验是近代精确验证电力定律的雏形。
1785年,库仑设计了精巧的扭秤实验,直接测定了两个静止点电荷的相互作用力与它们之间的距离二次方成反比,与它们的电量乘积成正比。
库仑的实验得到了世界的公认,从此电学的研究开始进入科学行列。
1811年泊松把早先力学中拉普拉斯在基础上发展起来的势论用于静电,发展了静电学的解析理论。
18世纪后期电学的另一个重要的发展是意大利物理学家伏打发明了电池,在这之前,电学实验只能用摩擦起电机的莱顿瓶进行,而它们只能提供短暂的电流。
1780年,意大利的解剖学家伽伐尼偶然观察到与金属相接触的蛙腿发生抽动。
他进一步的实验发现,若用两种金属分别接触蛙腿的筋腱和肌肉,则当两种金属相碰时,蛙腿也会发生抽动。
1792年,伏打对此进行了仔细研究之后,认为蛙腿的抽动是一种对电流的灵敏反应。
电流是两种不同金属插在一定的溶液内并构成回路时产生的,而肌肉提供了这种溶液。
基于这一思想,1799年,他制造了第一个能产生持续电流的化学电池,其装置为一系列按同样顺序叠起来的银片、锌片和用盐水浸泡过的硬纸板组成的柱体,叫做伏打电堆。
此后,各种化学电源蓬勃发展起来。
1822年塞贝克进一步发现,将铜线和一根别种金属(铋)线连成回路,并维持两个接头的不同温度,也可获得微弱而持续的电流,这就是热电效应。
化学电源发明后,很快发现利用它可以作出许多不寻常的事情。
1800年卡莱尔和尼科尔森用低压电流分解水;同年里特成功地从水的电解中搜集了两种气体,并从中电解出金属铜;1807年,戴维利用庞大的电池组先后电解得到钾、钠、钙、镁等金属;1811年他用2000个电池组成的电池组制成了碳极电弧;从19世纪50年代起它成为灯塔、剧院等场所使用的强烈光电源,直到70年代才逐渐被爱迪生发明的白炽灯所代替。
此外伏打电池也促进了电镀的发展,电镀是1839年由等人发明的。
虽然早在1750年富兰克林已经观察到莱顿瓶放电可使钢针磁化,甚至更早在1640年,已有人观察到闪电使罗盘的磁针旋转,但到19世纪初,科学界仍普遍认为电和磁是两种独立的作用。
与这种传统观念相反,丹麦的自然哲学家接受了德国哲学家康德和谢林关于自然力统一的哲学思想,坚信电与磁之间有着某种联系。
经过多年的研究,他终于在1820年发现:当电流通过导线时,引起导线近旁的磁针偏转。
的发现开拓了电学研究的新纪元。
的发现首先引起法国物理学家的注意,同年即取得一些重要成果,如安培关于载流螺线管与磁铁等效性的实验;阿喇戈关于钢和铁在电流作用下的磁化现象;毕奥和萨伐尔关于长直载流导线对磁极作用力的实验;此外安培还进一步做了一系列电流相互作用的精巧实验。
由这些实验分析得到的电流元之间相互作用力的规律,是认识电流产生磁场以及磁场对电流作用的基础。
的发现打开了电应用的新领域。
1825年斯特金发明电磁铁,为电的广泛应用创造了条件。
1833年高斯和韦伯制造了第一台简陋的单线电报;1837年惠斯通和莫尔斯分别独立发明了电报机,莫尔斯还发明了一套电码,利用他所制造的电报机可通过在移动的纸条上打上点和划来传递信息。
1855年汤姆孙(即开尔文)解决了水下电缆信号输送速度慢的问题,1866年按照汤姆孙设计的大西洋电缆铺设成功。
1854年,法国电报家布尔瑟提出用电来传送声音的设想,但未变成现实;后来,赖斯于1861年实验成功,但未引起重视。
1861年贝尔发明了电话,作为收话机,它仍用于现代,而其发话机则被爱迪生的发明的碳发话机以及休士的发明的传声器所改进。
发现不久,几种不同类型的检流计设计制成,为欧姆发现电路定律提供了条件。
1826年,受到傅里叶关于固体中热传导理论的启发,欧姆认为电的传导和热的传导很相似,电源的作用好像热传导中的温差一样。
为了确定电路定律,开始他用伏打电堆作电源进行实验,由于当时的伏打电堆性能很不稳定,实验没有成功;后来他改用两个接触点温度恒定因而高度稳定的热电动势做实验,得到电路中的电流强度与他所谓的电源的验电力成正比,比例系数为电路的电阻。
由于当时的能量守恒定律尚未确立,验电力的概念是含混的,直到1848年基尔霍夫从能量的角度考查,才橙清了电位差、电动势、等概念,使得欧姆理论与静电学概念协调起来。
在此基础上,基尔霍夫解决了分支电路问题。
杰出的英国物理学家法拉第从事电磁现象的实验研究,对电磁学的发展作出极重要的贡献,其中最重要的贡献是1831年发现电磁感应现象。
紧接着他做了许多实验确定电磁感应的规律,他发现当闭合线圈中的磁通量发生变化时,线圈中就产生感应电动势,感应电动势的大小取决于磁通量随时间的变化率。
后来,楞次于1834年给出感应电流方向的描述,而诺埃曼概括了他们的结果给出感应电动势的数学公式。
法拉第在电磁感应的基础上制出了第一台发电机。
此外,他把电现象和其他现象联系起来广泛进行研究,在1833年成功地证明了摩擦起电和伏打电池产生的电相同,1834年发现电解定律,1845年发现磁光效应,并解释了物质的顺磁性和抗磁性,他还详细研究了极化现象和静电感应现象,并首次用实验证明了电荷守恒定律。
电磁感应的发现为能源的开发和广泛利用开创了崭新的前景。
1866年西门子发明了可供实用的自激发电机;19世纪末实现了电能的远距离输送;电动机在生产和交通运输中得到广泛使用,从而极大地改变了工业生产的面貌。
对于电磁现象的广泛研究使法拉第逐渐形成了他特有的场的观念。
他认为:力线是物质的,它弥漫在全部空间,并把异号电荷和相异磁板分别连结起来;电力和磁力不是通过空虚空间的超距作用,而是通过电力线和磁力线来传递的,它们是认识电磁现象必不可少的组成部分,甚至它们比产生或汇集力线的源更富有研究的价值。
法拉第的丰硕的实验研究成果以及他的新颖的场的观念,为电磁现象的统一理论准备了条件。
诺埃曼、韦伯等物理学家对电磁现象的认识曾有过不少重要贡献,但他们从超距作用观点出发,概括库仑以来已有的全部电学知识,在建立统一理论方面并未取得成功。
这一工作在19世纪60年代由卓越的英国物理学家麦克斯韦完成。
麦克斯韦认为变化的磁场在其周围的空间激发涡旋电场;变化的电场引起媒质电位移的变化,电位移的变化与电流一样在周围的空间激发涡旋磁场。
麦克斯韦明确地用数学公式把它们表示出来,从而得到了电磁场的普遍方程组——麦克斯韦方程组。
法拉第的力线思想以及电磁作用传递的思想在其中得到了充分的体现。
麦克斯韦进而根据他的方程组,得出电磁作用以波的形式传播,电磁波在真空中的传播速度等于电量的电磁单位与静电单位的比值,其值与光在真空中传播的速度相同,由此麦克斯韦预言光也是一种电磁波。
1888年,赫兹根据电容器放电的振荡性质,设计制作了电磁波源和电磁波检测器,通过实验检测到电磁波,测定了电磁波的波速,并观察到电磁波与光波一样,具有偏振性质,能够反射、折射和聚焦。
从此麦克斯韦的理论逐渐为人们所接受。
麦克斯韦电磁理论通过赫兹电磁波实验的证实,开辟了一个全新的领域——电磁波的应用和研究。
1895年,俄国的波波夫和意大利的马可尼分别实现了无线电信号的传送。
后来马可尼将赫兹的振子改进为竖直的天线;德国的布劳恩进一步将发射器分为两个振荡电路,为扩大信号传递范围创造了条件。
1901年马可尼第一次建立了横跨大西洋的无线电联系。
电子管的发明及其在线路中的应用,使得电磁波的发射和接收都成为易事,推动了无线电技术的发展,极大地改变了人类的生活。
1896年洛伦兹提出的电子论,将麦克斯韦方程组应用到微观领域,并把物质的电磁性质归结为原子中电子的效应。
这样不仅可以解释物质的极化、磁化、导电等现象以及物质对光的吸收、散射和色散现象;而且还成功地说明了关于光谱在磁场中分裂的正常塞曼效应;此外,洛伦兹还根据电子论导出了关于运动介质中的光速公式,把麦克斯韦理论向前推进了一步。
在法拉第、麦克斯韦和洛伦兹的理论体系中,假定了有一种特殊媒质以太存在,它是电磁波的荷载者,只有在以太参照系中,真空中光速才严格地与方向无关,麦克斯韦方程组和洛伦兹力公式也只在以太参照系中才严格成立。
这意味着电磁规律不符合相对性原理。
关于这方面问题的进一步研究,导致了爱因斯坦在1905年建立了狭义相对论,它改变了原来的观点,认定狭义相对论是物理学的一个基本原理,它否定了以太参照系的存在并修改了惯性参照系之间的时空变换关系,使得麦克斯韦方程组和洛伦兹力公式有可能在所有惯性参照系中都成立。
狭义相对论的建立不仅发展了电磁理论,并且对以后理论物理的发展具有巨



