欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 线性代数实验心得体会

线性代数实验心得体会

时间:2017-06-18 19:34

线性代数matlab实验报告

额,同学和我一样啊

你是

(商品的市场占有率问题) 有两家公司 R 和 S 经营同类的产品, 它们相互竞争. 每年 R 公司保有 1\\\/4 的顾客,而 3\\\/4 转移向 S 公司;每年 S 公司保有 2\\\/3 的顾 客,而 1\\\/3 转移向 R 公司.当产品开始制造时 R 公司占有 3\\\/5 的市场分额,而 S 公司占有 2\\\/5 的市场分额.问两年后,两家公司所占的市场分额变化怎样, 五年以后会怎样? 十年以后如何? 是否有一组初始市场分额分配数据使以后每 年的市场分配成为稳定不变? 问题分析与数学模型 根据两家公司每年顾客转移的数据资料,可得以下转移矩阵: 1 4 A= 3 4 1 3 2 3 根据产品制作之初,市场的初始分配数据可得如下向量: 3 5 X0 = 2 5 所以 n 年后,市场分配为: 1 4 X n = AX n 1 = L = A n X 0 = 3 4 1 3 2 3 n 3 5 2 5 设有数据 a 和 b 为 R 公司和 S 公司的初始市场份额,则 a + b = 1 .为了使以后每年的市 场分配不变,根据顾客数量转移的规律,有: 1 4 3 4 1 3 a a = 2 b b 3 即 3 4 3 4 1 3 a =0 1 b 3 该方程若有解,则应该在非零解的集合中选取正数解作为市场稳定的初始份额. 程序和计算结果 为了得到两年,五年,十年后市场的分配情况. 在 MATLAB 窗口中输入 >> A=[1\\\/4 1\\\/3;3\\\/4 2\\\/3] %输入转移矩阵 A >> x0=[3\\\/5;2\\\/5] %输入初始向量,即初始市场份额 >> x2=A^2*x0 %计算两年后的市场份额 >> x5=A^5*x0 %计算五年后的市场份额 >> x10=A^10*x0 %计算十年后的市场份额 x2 = 0.3097 0.6903 x5 = 0.3077 0.6923 x10 = 0.3077 0.6923 由此可得下表 6.3表 6.3市场份额的转移率: 两年后 五年后 十年后 R 公司的市场份额 31% 31% 31% S 公司的市场份额 69% 69% 69% 为了求 a 和 b 作为 R 公司和 S 公司稳定的初始市场份额,需要求解齐次方程组. 在 MATLAB 窗口中输入: >> format rat %定义输出格式为小整数比的近似值 >> rref(A-eye(2)) %对矩阵 A I 2×2 进行初等变换,所得矩阵为矩阵 % A I 2×2 的最简行阶梯矩阵 ans = 1 0 -4\\\/9 0 4 a b =0. 9 4 ≈ 31% 13 9 b= ≈ 69% 13 a= 由此得简化后的方程为 结合约束条件 a + b = 1 ,可得 这是使市场稳定的两家公司的初始份额,也正好与表中的数据吻合. 问题的解答和进一步思考 在 R 公司和 S 公司的市场初始份额分别为 60%和 40%的情况下,根据计算结果, 两年后情况变化较大:R 公司大约占 31%,S 公司大约占 69%.而五年以后与两年以 后比较变化不大:R 公司大约占 30.8%,S 公司大约占 69%.十年后的的情况与五年 后的情况比较大约不变.市场已趋于稳定.

明白人告诉我 线性代数 的应用究竟有多强大

工科几乎都牵涉高数我已经有所体会了 但是线性代数我只感

线性代数有什么用

线性代数有什么用

这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题。

我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你:1、 如果你想顺利地拿到学位,线性代数的学分对你有帮助;2、 如果你想继续深造,考研,必须学好线代。

因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础。

例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论。

3、 如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲。

他在自己的数学名著《数学概观》中说:要是没有线性代数,任何数学和初等教程都讲不下去。

按照现行的国际标准,线性代数是通过公理化来表述的。

它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论。

…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此。

4、 如果毕业后想找个好工作,也必须学好线代:l 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学)。

恭喜你,你的职业未来将是最光明的。

如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料)。

l 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。

l 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象。

l 想搞经济研究。

好,知道列昂惕夫(Wassily Leontief)吗

哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门。

这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型。

列昂惕夫因此获得了1973年的诺贝尔经济学奖。

l 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划。

许多重要的管理决策是在线性规划模型的基础上做出的。

线性规划的知识就是线代的知识啊。

比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。

l 对于其他工程领域,没有用不上线代的地方。

如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解; 作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗

这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。

知道马尔科夫链吗

这个 “链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了。

l 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究。

嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用。

求一篇车铣实训的小结

金工实习上学期也有,可那时只是参观课,不用动手,而且只要两个全天也就结束了,这回可是真刀真枪的干,从第二周一直到第十七周全有,一周就是其中的一整天都要在工程实习中心度过,那里可谓实实在在的工厂,什么设备都有。

从车床到冲床,从沙模到激光切割,从焊接到冶炼,真是让我们大开眼界,过足了当“蓝领”的瘾。

可别看说得这么好,干起来实在不轻松,外面雪花飞舞,屋内热火朝天,我们第一天要做的就是车床加工零件,真真一天下来腰酸背痛外带腿疼,只做了一个锤子的把与锤头连接的部分(具体叫什么给忘了,呵呵),要是论大小也就是一块橡皮。

虽然只干了一天,但已经很累了,这还没算早上国防生的出操,因此到了晚上的线性代数课我差点睡过去(不过好在还是全听下来了)。

这一天,我体会出了工人的不易,工作又累又辛苦,每天的工作又重复而枯燥,工资估计也没多少,然而如果没有他们,我们的建设永远只能停留在设计与规划阶段。

将来我当然不会去工厂当一名工人,但这种实习给了我不小的收获,让我体味到很多。

怎样入门计算化学

电子科技大学UNIVERSITYOFELECTRONICSCIENCEANDTECHNOLOGYOFCHINA电子技术基础实验报告ElectronicTechnologyBasicExperimentReport报告内容:叠加定理的验证学院:作者姓名:学号:指导教师:实验:叠加定理的验证一、实验目的1.进一步掌握直流稳压电源和万用表的使用方法。

2.掌握直流电压和直流电流的测试方法。

3.进一步加深对叠加定理的理解。

4.通过Multisim仿真软件进行实验仿真,了解Multisim的使用方法。

二、实验原理叠加定理:叠加定理指出,全部电源在线性电路中产生的任一电压或电流,等于每一个电源单独作用产生的相应电压或电流的代数和。

三、实验内容叠加定理的验证在仿真实验中根据图1所示电路对电路中电压源共同作用时的电流进行测量,根据图2所示电路对电压进行测量:(图1)(图2)根据所绘制的电路,在Multisim中进行电路仿真,分别将两电压源置零,即将电压源短路,得到下列所示电路。

图3、图4所示电路,对支路电流进行测量,图5、图6所示电路,对支路电压进行测量。

(图3)(图4)(图5)(图6)四、实验结果根据仿真实验我们可以得到,全部电源在线性电路中产生的任一电压或电流,等于每一个电源单独作用产生的相应电压或电流的代数和,验证了叠加定理。

五、实验收获与感悟通过使用Multisim仿真软件对叠加定理进行验证,证实了叠加定理的正确性,同时对该仿真软件的使用有了最初步的了解和认识。

在绘制电路的过程中,感受

叠加定理实验报告

叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明 叠加原理指出在有多个独立源共同作用下的线性电路中通过每一个元件的电流或其两端的电压可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号某独立源的值增加或减小K 倍时电路的响应即在电路中各电阻元件上所建立的电流和电压值也将增加或减小K倍。

三、实验设备 高性能电工技术实验装置DGJ-01直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。

四、实验步骤 1 用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1将两路稳压电源的输出分别调节为12V和6V接入图中的U1和U2处。

2 通过调节开关K1和K2分别将电源同时作用和单独作用在电路中完成如下表格。

表3-1 测量项目 实验内容 U1 (V) U2 (V) I1 (mA) I2 (mA) I3 (mA) UAB (V) UCD (V) UAD (V) UDE (V) UFA (V) U1单独作用 12 0 8.693 -2.427 6.300 2.429 0.802 3.231 4.446 4.449 U2单独作用 0 6 -1.198 3.589 2.379 -3.590 -1.184 -1.215 -0.608 -0.608 U1、U2共同作用 12 0 7.556 1.160 8.629 -1.162 -0.382 4.446 3.841 3.841 2U2单独作用 0 12 -2.395 7.180 4.758 -7.175 -2.370 2.440 -1.217 -1.218 3 将U2的数值调到12V重复以上测量并记录在表3-1的最后一行中。

4 将R3(330)换成二极管IN4007继续测量并填入表3-2中表3-2 测量项目 实验内容 U1 (V) U2 (V) I1 (mA) I2 (mA) I3 (mA) UAB (V) UCD (V) UAD (V) UDE (V) UFA (V) U1单独作用 12 0 8.734 -2.569 6.198 2.575 0.607 4.473 4.477 U2单独作用 0 6 0 0 0 0 -6 0 0 U1、U2共同作用 12 6 7.953 0 7.953 0 -1.940 4.036 4.040 2U2单独作用 0 12 0 0 0 0 -12 0 0 0 五、实验数据处理和分析 对图3-1的线性电路进行理论分析利用回路电流法或节点电压法列出电路方程借助计算机进行方程求解或直接用EWB软件对电路分析计算得出的电压、电流的数据与测量值基本相符。

验证了测量数据的准确性。

电压表和电流表的测量有一定的误差都在可允许的误差范围内。

验证叠加定理以I1为例U1单独作用时I1a=8.693mA,U2单独作用时I1b=-1.198mAI1a+I1b=7.495mAU1和U2共同作用时测量值为7.556mA因此叠加性得以验证。

2U2单独作用时测量值为-2.395mA而2*I1b=-2.396mA因此齐次性得以验证。

其他的支路电流和电压也可类似验证叠加定理的准确性。

对于含有二极管的非线性电路表2中的数据不符合叠加性和齐次性。

六、思考题 1 电源单独作用时将另外一出开关投向短路侧不能直接将电压源短接置零。

2 电阻改为二极管后叠加原理不成立。

七、实验小结 测量电压、电流时应注意仪表的极性与电压、电流的参考方向一致这样纪录的数据才是准确的。

在实际操作中开关投向短路侧时测量点F延至E点B延至C点否则测量出错。

线性电路中叠加原理成立非线性电路中叠加原理不成立。

功率不满足叠加原理

学习高等数学的感想

学习高等数学的感想我认为学习高数应该从以下几个方面着手: 一.走出心理的障碍.一些学生学高数学不懂,我认为是心理的障碍.这些同学当中极大数是高中时的数学没有学懂,因此一上来就失去了自信心,自认为自己不行学不懂高数.要我说这是畏惧的心理在作怪.因此要克服学习高数的困难首先应该先克服自己的心理.具体应该怎样克服这种心理难关呢?我认为首先是要找回自己的自信心.当我们拿到一道棘手的数学题,经过反复思考还是无从下手,此时千万不要谎.这时你不妨闭眼默吸一口气,并心中默念我行,我能行.这可能能激发你的思维,激活你的灵感.剩下另一些学生他们学不好高数,那他们的心理又是怎样呢?我自认为,这些学生主要是心不专,也就是在做数学题是心中没有全身心的投入,而是转想他事,这样以来刚刚还有一些思维或灵感就会随着他们的思想跑门而消失,此时他们也许就有一些自负的心理,自认为自己不是学高数的料.这也是不自信的另一种表现,因此学好高数我认为第一点就是要有自信心和专心的思考.这才是学习好高数的基础. 二.注重技巧和换位思考.有时我们拿到一道题咋看都没法做,此时我们不妨换个角度来看这道题,或许我们可以从另一面找到突破口.下面我举个例子来说明我所倡导的换位思考.我们都知道在战争中,我们打仗是注重战略的.现假设我们面前有一城堡,我们无论用什么现代武器都无法将它摧毁,那怎么办?难道是将它围住困死里面的人吗?不行.这样对我们的粮草同样是个消耗.也就是同样我们也是在困自己,再说时间就是金钱.我们没有时间去等待它的自行毁灭.假如他们的后备有积攒我们难道要等一辈子?此时最重要的是我们想办法去破他,我们可以从地底下往上攻.我们也可以从心理上打赢他们,使他们军心散乱等等一些方法.而我们现在碰上的数学难题就是这城堡,我们硬想是破不了的,我们不妨转个弯来考虑一下,也可以退一步想想或许这题没有我们想的那么困难,也可以先放下这道题去看看学过的公式,定理.从先哲的思想中去悟出这道题的突破口等等一些办法都可以用. 每当我们成功的破解一道题时,我想大家都有一种满足感.我也有这种感觉,但是我们就仅仅满足这点吗?我们为什么不再想想这道题,或许还有其他的办法去解决.这样想了,这样做了,确实很费时间,但是这样的效果是不一样,它可以激活我们的思维,下次我们再遇上难题时我们就不至于被挡住了.还有,有时我们做出一道题时发现它的步骤太过于繁琐,这时可

急求一篇大学物理电磁学学习体会论文,800就行,谢谢各位,急求

去听老师讲和同学的积极发言,我认为这样的学习才是最好的~2. 多思多问,不要知其然而不知其所以然 学习物理关键在于多思考,搞清楚其中的原理。

学习物理不是简单的套用公式,进行数字推导;物理重要的是要掌握扎实的基础知识。

要对基本物理概念、物理规律清楚弄清本质,明白相关概念和规律之间的联系,明白物理公式定理、定律在什么条件下应用,而不能简单地以做习题对基本概念和基本规律的学习和理解,如果概念不清做题不仅费时间费精力,而且遇到的矛盾或困惑就越多.做习题的目的是为了巩固基本知识,从而达到灵活运用。

所以上课时是最重要的时间段,也许你上课不过听了一个小时,也比你可惜啊一个人啃书本强得多~3. 预习和复习是学习物理的必经步骤 与学习任何课程一样,学习大学物理也要牢牢抓住课前预习、课堂听讲、做好笔记、课后复习(包括完成作业)和考前复习这几个主要环节。

课前预习就是粗略浏览将要学习的内容,目的在于明确课堂上必须重点解决的问题;课堂听讲就是要学习老师引出物理概念的目的、建立物理模型的思路、描述物理现象的方式、演绎物理原理的程序、解释物理定律的思想、分析物理问题的过程、解决物理问题的方法。

在课堂上最重要的是学习物理思想和物理方法,同时以提纲的形式记录老师授课的全过程,重点记录课本上没有的内容和自己觉得重要的东西, 以备查阅。

课后复习(包括完成作业)就是所谓的“把书读厚”,既要全面回顾课堂听讲的过程和所学内容,又要凭借记忆和查阅课本,把提纲式课堂笔记补充为详细笔记,并写下自己的思考体会,还要理清知识重点、难点以及解决某类物理问题的步骤和技巧,更要在完成作业的过程中巩固所学知识、解决发现存在的问题。

考前复习就是所谓的“把书再读薄”,此时的重点不在于记忆概念、定律和结论,而在于理清课程体系和知识框架、独特的研究方法和思想模式、常见问题的处理流程和技巧、常用的数学知识,当然还要查漏补缺。

以上就是本学期来,我学习物理的心得和体会,当然肯定还有什么不足或者需要补充的地方,而我也会不断总结,边学习边体会,在物理的这片天空下闯出自己的一2\\\/13页块地~篇二:大学物理学习心得体会-787 大学物理学习心得 从初中正是开始学习物理到现在已经接触物理近七年了,这期间对物理这门学科有了一定的认识和了解。

同时,我们对如何学好物理也都有自己的方法和心得。

《大学物理》是我们工科必修的一门重要基础课,但由于我们现在所学的《大学物理》涵盖内容广泛,包括力学、热学、量子力学以及相对论,并且对高等数学、线性代数等数学基础要求较高,使得大家对这门课的学习感到很困难。

而且《大学物理》并没有像大学英语、计算机基础等基础课一样有相关的水平考试,其考试结果并没有成为大学生就业的参考标准之一,因此没有引起大学生的足够重视。

因上述原因,大学物理很难调动学生的学习积极性。

任何一门课程的学习都离不开课堂与课后学习这两个环节。

但由大学的教育现状可知,部分人没有认真听课,在课堂上的学习效率比较低下。

这个是个人兴趣问题,并不是在短期内能解决的,但我们十分有必要提高我们的听课效率。

那么如何达到高效呢,我们听课的时候要围绕着老师的思路,跟着老师的问题提示思考,同时又能提出一些自己不太明白的问题。

对于老师的一些分析,课本上没有的,及时提笔注释在书上相应的空白地方,便于自己看书时理解。

课堂上认真听讲,课后,我们在完成作业之前应该先仔细看书回顾一下课堂内容,再结合例题加深理解,然后动笔做作业。

同时,在课后复习时,我们应注意几个问题,首先就是基本概念、基本公式的学习,这个直接看课本就行了,但要注意公式的推导过程和应用范围, 最好就是把重要公式自己推导一次加深印象。

然后就是做题巩固记忆,先看一下例题还是有好处的,即使有不少例题很简单,但都是经典题目,虽然不难但基本体现了课本知识的应用。

做适量课外的题目对加深公示的理解也有很大的帮助。

遇到不懂的题目可以在课下的时候问一下老师,同时我觉得与同学交流一下也有很好的效果,可以知道别人的思路与自己有何不同,进而比较各种方法的优缺点,达到双赢的效果。

除此之外,我认为可以借助一些其他教材或辅导资料来扩展我们的视野,不同的教材分析3\\\/13页问题的角度可能不同,而且有些教材可能更符合我们的思维方式,便于我们加深对原理的理解。

课堂把握重点与细节,课后下功夫通过各种途径来巩固加深理解。

与此同时,提高学习大学物理的兴趣是很重要的。

大学物理是一门实验学科,多看一下实验不但对相关概念有更多感性认知,而且还能提高对物理学习的兴趣和热情。

虽然由于实验条件的限制,不可能在课堂上看到实验,但我们可以充分地利用网络资源,了解一下实验过程和结果。

了解一下物理学史和最新物理的成果也能提高我们的兴趣。

要学好大学物理,还要培养用高等数学来思考、处理物理问题的能力。

如果硬要把中学物理和大学物理做一个比较的话,我要说,中学解决“恒”的问题,如物体在恒力作用下的运动,恒力的功等等;大学物理处理“变”的问题,如变力的冲量,变力的功等等。

从数学角度来说,中学物理使用初等数学解题,而大学物理趋向于用高等数学解题。

不少学生不适应这种变化,还停留在原来的认识水平上。

他 们只习惯于把中学的思维、方法生搬硬套到新的物理情境中,不善于变换认识角度,不善于改变解决问题的方式。

尽管老师反复强调,但仍有不少同学仍按照原来的思路去分析、处理问题,这时思维定势带来的消极影响,给物理学习带来了障碍。

数学不仅是一种计算工具,更是对物理现象进行抽象、概括的表现手段。

在大学物理中,许多概念和规律都是用高等数学的形式表达出来的。

我们还要调整好我们的学习态度,积极进取,不要松懈。

从我们的学习状态等非智力因素看,许多同学进入大学后往往有松一口气的想法,甚至高呼60分万岁,加之对大学物理与中学物理的质的飞跃认识不足,一旦觉醒过来,已经欠账太多,尽管有的同学加倍弥补,也收效甚微,他们会因心理平衡受到破坏而是去学习的信心。

有的同学有一个模糊的认识,就凭我中学物理的水平,大学马虎一点,及格总不成问题,就放松了对自己的要求。

结果怎样,期末考试不及格,补考还是不及格。

思想上不重视,主观上不努力,上课不认真听讲,课后抄作业之风盛行。

像这样,想学好大学物理是不可能的,想及格都难。

总的来说,要学好大学物理也不是一件难事,我们只要做好三件事:一是认真读书,高清物理概念。

如三大守恒定律的条件和应用,高4\\\/13页斯定理、安培环路定理的意义等等。

二是认真做好习题。

课本上的习题都是精心设计的,它可以帮助你理解、掌握所学内容。

三是多阅读相关辅导资料,尤其是《大学物理学习指导》,该书内容全面,信息量大,题目典型,它是我们的良师益友。

在这本书上花点时间,你是不会后悔的。

四是心态上积极进取,不松不懈,严格要求自己,在思想上给与足够的重视。

以上基本是我在大学物理学习过程中的心得体会。

篇三:大学物理学习感想 班级:姓名:学号:转眼之间,已经学习大学物理这门课将近一年的时间了,回首这一年的学习经历,感触颇多。

对于我们这些理工科的大学生来讲,物理不是一门陌生的课程,我们从初中开始接触物理知识,高中又学了三年的物理,这可能有助于大学物理的教学,因为我们已具有一定的物理基础知识,也可能不利于大学物理的学习,因为大学物理和中学物理在教学方法、学习方法等各方面有许多不同,我们已习惯于中学物理的教学方法和学习方法,已经形成了一定的思维定势,将对大学物理的教学和学习带来负面影响。

在高中时候,物理的学习更多的的是为了做题,很多题目有自己固定的解题步骤、方法,往往我们可以以一概全,掌握一个问题从而掌握一系列的问题,很多时候我们不用有什么想法,只是单纯的代入公式中就可以把题目解出来,稍微难点的题目也只是有点技巧性的思路或者计算方法,从这些学习中很难学习到思想性的东西,高中物理老师的教学方式就是让同学们很好的掌握解决各种物理问题的同一方法,锻炼同学们更有速率和效率的解决问题。

而在步入大学物理的学习后,我发现大学物理和高中物理有着很大意义上的差异,大学物理老师的教学更大程度上是对学生的引导,由于课时比较少无法更加详细的展开讲解,所以老师更多的是物理思想、物理方法的介绍,更多的问题留给我们自己在课下自己

机械专业都学什么专业课

主要课程:高等数学(微积分)、线性代数、概率论与数理统计、机械制图、工程材料、工程力学,机械原理、机械设计、工程经济,机械设计基础、电工与电子技术、液压传动与气压传动、机械工程材料、制造技术基础、微机电系统与制造、互换性测量、控制工程、数控技术、CAD。

具体见:

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片