欢迎来到一句话经典语录网
我要投稿 投诉建议
当前位置:一句话经典语录 > 心得体会 > 霍尔效应实验心得体会

霍尔效应实验心得体会

时间:2015-07-04 01:26

霍尔效应实验的感悟

一、实验名称: 霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差.三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转.当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场.对于图1所示.半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型.显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) .设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:(1-1)因为 , ,又根据 ,则(1-2)其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数.只要测出 、 以及知道 和 ,可按下式计算 :(1-3)(1—4)为霍尔元件灵敏度.根据RH可进一步确定以下参数.(1)由 的符号(霍尔电压的正负)判断样品的导电类型.判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型.(2)由 求载流子浓度 ,即 .应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的.严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》).(3)结合电导率的测量,求载流子的迁移率 .电导率 与载流子浓度 以及迁移率 之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多.产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示.(1)厄廷好森效应引起的电势差 .由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 .可以证明 . 的正负与 和 的方向有关.(2)能斯特效应引起的电势差 .焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流.与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 .若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关.(3)里纪-勒杜克效应产生的电势差 .上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 . 的正负仅与 的方向有关,而与 的方向无关.(4)不等电势效应引起的电势差 .由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 . 的正负只与电流 的方向有关,而与 的方向无关.综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和.可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响.在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压.即:

霍尔效应实验报告

霍尔效应与应用设计摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。

本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。

关键词:霍尔系数,电导率,载流子浓度。

1.引言【实验背景】置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。

如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。

【实验目的】1.通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构;2.学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术;3.学会用“对称测量法”消除副效应所产生的系统误差的实验方法。

4.学习利用霍尔效应测量磁感应强度B及磁场分布。

二、实验内容与数据处理【实验原理】一、霍尔效应原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。

如图1所示。

当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有

霍尔效应及应用的实验总结

实验表明:霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间成线性的关系。

长直螺旋管轴向磁感应强度: 理论值比较误差为: E=5.3%十、问题讨论(或思考题):

用霍尔效应法则测量磁场实验报告怎么写

验题目通过效应测量磁场【实验目的】1、了解霍尔效应原理以及有关霍尔器件对要求的知识。

2、学习用“对称测量法”消除付效应影响。

3、根据霍尔电压判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,【实验仪器】QS-H霍尔效应组合仪【实验原理】1、通过霍尔效应测量磁场霍尔效应装置如图2.3.1-1和图2.3.1-2所示。

将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极A、A上施加电流I时,薄片内定向移动的载流子(设平均速率为)受到洛伦兹力的作用,(1)无论载流子是负电荷还是正电荷,的方向均沿着x方向,在磁力的作用下,载流子发生偏移,产生电荷积累,从而在薄片B、B两侧产生一个电位差,形成一个电场E。

电场使载流子又受到一个与FB方向相反的电场力,(2)其中b为薄片宽度,随着电荷累积而增大,当达到稳定状态时,即(3)这时在B、B两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极B、B称为霍尔电极。

另一方面,射载流子浓度为n,薄片厚度为d,则电流强度与的关系为:或(4)由(3)和(4)可得到(5)另,则(6)R称为霍尔系数,它体现了材料的霍尔效应大小。

根据霍尔效应制作的元件称为霍尔元件。

在应用中,(6)常以如下形式出现:(7)式中称为霍尔元件灵敏度,称为控制电流。

由式(7)可见,若、已知,只要测出霍

怎样利用霍尔效应测量载流子

只要分别测出霍尔电流IH及霍尔电势差UH就可算出磁场B的大小.2mm厚,直到电场对载流子的作用力FE=qE与磁场作用的洛沦兹力相抵消为止,宽度为b。

洛沦兹力使电荷产生横向的偏转,一般只有0;(mA·T),垂直磁场对运动电荷产生一个洛沦兹力(3-14-1)式中q为电子电荷,是研究半导体材料的重要手段。

KH与载流子浓度p成反比,知道了霍尔片的灵敏度KH。

霍尔电势差是这样产生的,所以N型样品和P型样品的霍尔电势差有不同的符号霍尔效应可以测定载流子浓度及载流子迁移率等重要参数。

由(3-14-5)式可以看出,霍尔电势差就是由这个电场建立起来的,所以都用半导体材料作为霍尔元件。

还可以用霍尔效应测量直流或交流电路中的电流强度和功率以及把直流电流转成交流电流并对它进行调制,空穴有一定的漂移速度v、转速的测量,则空穴的速度v=IH/pqbd。

KH与片厚d成反比,代入(3-14-2)式有(3-14-3)上式两边各乘以b。

设P型样品的载流子浓度为p。

通过样品电流IH=pqvbd,即(3-14-2)这时电荷在样品中流动时将不再偏转,所以霍尔元件都做的很薄、放大。

如果是N型样品,产生一个横向电场E,由于样品有边界。

一般要求KH愈大愈好。

用霍尔效应制作的传感器广泛用于磁场,则横向电场与前者相反,单位为mV、位置。

半导体内载流子浓度远比金属载流子浓度小、位移. (3-14-5)比例系数KH=RH/d=1/pqd称为霍尔元件灵敏度,便得到(3-14-4)称为霍尔系数。

在应用中一般写成UH=KHIHB:当电流IH通过霍尔元件(假设为P型)时,所以有些偏转的载流子将在边界积累起来,据此可以判断霍尔元件的导电类型,厚度为d。

这就是霍尔效应测磁场的原理,以及判断材料的导电类型

利用霍尔效应测磁场中,根据实验数据可得出什么结论

实验三霍尔位移传感器实验报告一、实验原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。

具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势UH=KHIB,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为UH=kX,式中k为位移传感器的灵敏度。

这样它就可以用来测量位移。

霍尔电动势的极性表示了元件的方向。

磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。

二、实验数据:表1实验数据—输出霍尔电动势与霍尔元件位移X\\\/mm00.511.522.533.5V\\\/mv正行程反行程-2.415.61.811.544.37.261.95.162.23.961.12.559.31.854.81.3X\\\/mm55.566.577.588.5V\\\/mv正行程反行程38.40.325.30.1-2.1-3.2-54.8-134.2-60-140-247-260-412-470-653-650X\\\/mm1010.51111.51212.51313.5V\\\/mv正行程反行程-2040-2530-2890-3140-2050-2530-2890-3140-3300-3300-3390-3460-3490-3400-3470-3500449.80.59-995-102014-3510-35204.5440.49.5-1493-150014.5-3510-3520三、数据处理:1、输入—输出特性曲线由表1可画出该霍尔式位移传感器的输入输出特性曲线,如图1所示。

图1

采用霍尔效应法测量一个未知磁场时,测量误差有哪些

因为霍尔要实现准确测量的基本是磁场能够按既定的正确穿过霍尔元那个受磁面(不记得名字了,就这样说了,你理解一下),在接通电流的那一极就会存在电子或电荷的偏移,在第三个对面上产生电势差,再通过计算转换得到电磁强度。

所以,根据这个原理来看,如果测得的磁场存在误差,原因必然是角度不对(因为你不知道磁场是怎样的方向和角度),测量的误差必然是偏小。

假设原本角度为a1是测得准确值,现在是a2,角度差为a=|a1-a2|,假设原本磁场为B0,那么实际测得的B1=B0*cos(|a1-a2|)因为cos(|a1-a2|)<=1,所以测得的值必然不会大于实际值误差就是由霍尔元件放入未知磁场的角度存在偏差引起的

声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。联系xxxxxxxx.com

Copyright©2020 一句话经典语录 www.yiyyy.com 版权所有

友情链接

心理测试 图片大全 壁纸图片